AES Function Reference

THE ATARI COMPENDIUM

Application Services Library

TheApplication Services Librargrovides general use functions used in locating and working with other
resident applications in addition to providiA&S initialization and termination code. The members of
theApplication Services Librargre:

appl_exit()
appl_find()
appl_getinfo()
appl_init()
appl_read()
appl_search()
appl_tplay()
appl_trecord()
appl_write()

THE ATARI COMPENDIUM

appl_exit() — 6.47

appl_exit()

WORD appl_exit(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

appl_exit() should be called at the termination of any program initialized with
appl_init().

19 (0x13)

All AES versions.

return crys_if(0x13);

appl_exit() returns 0 if an error occurred or non-zero otherwise.

The proper procedure for handling an error from this function is currently
undefined.

appl_init()

appl_find()

WORD appl_find(fname)

CHAR *fname

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

appl_find() searches thBES's current process list for a program narfreaime
and, if present, returns the application identifier of the process.

13 (0X0D)
All AES versions.

fnameis a pointer to a null-terminated ASCII string containing a V@RMDOS
filename (not including an extension) padded with blanks to be exactly 8
characters long (not including thiJLL).

addrin[0] = fname;

return crys_if(0x0D);

appl_find() returns the application identifier of the process if it is found or -1
otherwise.

THE ATARI COMPENDIUM

6.48 — Application Services Library - AES Function Reference

VERSION NOTES AES versions from 4.0 add several extensions to this call for the benefit of
MultiTOS as follows:

* If the upper word of th€HAR * is OxFFFF, the lower word is assumed
to be theMiNT id andappl_find() will return theAES application
identifier.

* If the upper word of th€HAR * is OxFFFE, the lower word is assumed
to be theAES application identifier and thiNT id is returned.

* If the upper word of th€EHAR * is 0x0000, the current processes’
application identifier is returned.

This functionality only exists if thAES version is 4.0 and above and
appl_getinfo() indicates that it is available.

SEE ALSO appl_write(), appl_init()

appl_getinfo()

WORD appl_getinfo(ap_gtypeap_goutl ap_gout2 ap_gout3 ap_gout4)
WORD ap_gtype
WORD *ap_goutl *ap_gout2 *ap_gout3 *ap_gout4

appl_getinfo() returns information about ti&ES.

OPCODE 130 (0x82)
AVAILABILITY Available as ofAES version 4.00.
PARAMETERS ap_gtypespecifies the type of information to be returned in the shorts pointed to

by ap_gout] ap_gout? ap_gout3 andap_goutdas follows:

Name ‘ Value | Returns
AES_LARGEFONT 0 AES Large Font Information

ap_goutl is filled in with the AES font's point size.

ap_gout?2 is filled in with the font id.

ap_gout3is a code indicating the type of font:
SYSTEM_FONT (0) is the system font
OUTLINE_FONT (1) is an outline font

ap_gout4 is unused.
AES_SMALLFONT 1 AES Large Font Information

Same as above for the current small font.

THE ATARI COMPENDIUM

appl_getinfo() — 6.49

AES_SYSTEM 2 AES System Specifics
ap_goutl is filled in with the resolution number (as would be
returned by Getrez()).
ap_gout2is filled in with the number of colors supported by
the AES object library.
ap_gout3is 0O if color icons are not supported or 1 if they
are.
ap_gout4 is 0 to indicate that the extended resource file
format is not supported or 1 ifitis.

AES_LANGUAGE 3 AES Globalization
ap_goutl is filled in with the current AES language code as
follows:
Name ap_goutl Language
AESLANG_ENGLISH 0 English
AESLANG_GERMAN 1 German
AESLANG_FRENCH 2 French
— 3 (Reserved)
AESLANG_SPANISH 4 Spanish
AESLANG_ITALIAN 5 Italian
AESLANG_SWEDISH 6 Swedish
ap_gout2, ap _gout3, and ap_gout4 are unused.

AES_PROCESS 4 AES Multiple Process Support
ap_goutlis 0 to indicate the use of non-pre-emptive
multitasking and 1 to indicate the use of pre-emptive
multitasking.
ap_gout2is 0 if appl_find() cannot convert between MiNT
and AES id’s and 1 to indicate that it can.
ap_gout3is 0 if appl_search() is notimplemented and 1 if
itis.
ap_gout4 is 0 if rsrc_rcfix() is notimplemented and 1 if it
is.

AES_PCGEM 5 AES PC-GEM Features
ap_goutlis 0 if objc_xfind() is not implemented and 1 if it
is.
ap_gout2 is currently reserved.
ap_gout3is 0 if menu_click() is not implemented and 1 if it
is.
ap_gout4 is 0 if shel_rdef() and shel_wdef() are not
implemented and 1 if they are.

THE ATARI

COMPENDIUM

6.50 — Application Services Library - AES Function Reference

AES_INQUIRE 6

AES Extended Inquiry Functions

ap_goutlis 0 if -1 is not a valid ap_id parameter to
appl_read() or1ifitis.

ap_gout2is 0 if -1 is not a valid length parameter to
shel_get() or 1ifitis.

ap_gout3is 0if -1 is not a valid mode parameter to
menu_bar() or 1ifitis.

ap_gout4is 0 if MENU_INSTL is not a valid mode
parameter to menu_bar() or 1ifitis.

Currently reserved.

AES_MOUSE

AES Mouse Support

ap_goutlis 0 to indicate that mode parameters of 258-260
are not supported by graf_mouse() and 1 if they are.

ap_gout2is 0 to indicate that the application has control
over the mouse form and 1 to indicate that the mouse form
is maintained by the AES on a per-application basis.

ap_gout3and ap_gout4 are currently unused.

AES_MENU 9

AES Menu Support

ap_goutlis 0 to indicate that sub-menus are not supported
and 1 if MultiTOS style sub-menus are.

ap_gout2is 0 to indicate that popup menus are not
supported and 1 if MultiTOS style popup menus are.

ap_gout3is 0 to indicate that scrollable menus are not
supported and 1 if MultiTOS style scrollable menus are.

ap_gout4is 0 to indicate that the MN_SELECTED
message does not contain object tree information in
msg[5-7] and 1 to indicate that it does.

THE ATARI

COMPENDIUM

appl_getinfo() — 6.51

AES_SHELL

10

AES Shell Support

ap_goutl & 0XO0FF indicates the highest legal value for the
mode parameter of shel_write() . ap_goutl & OXFF0O0
indicate which extended shel_write() mode bits are
supported.

ap_gout2is 0 if shel_write() with a mode parameter of 0
launches an application or 1 if it cancels the previous
shel_write() .

ap_gout3is 0 if shel_write() with a mode parameter of 1
launches an application immediately or 1 if it takes effect
when the current application exits.

ap_goutd is 0 if ARGV style parameter passing is not
supported or 1 if it is.

AES_WINDOW

11

AES Window Features

ap_goutl is a bitmap of extended modes supported by
wind_get() and wind_set() (if a bit is set, it is supported)
as follows:

@
=

mode

WF_TOP returns window below the top also.
wind_get(WF_NEWDESK , ...) supported.
WF_COLOR get/set.

WF_DCOLOR get/set.

WF_OWNER get/set.

WF_BEVENT get/set.

WF_BOTTOM set.

WF_ICONIFY set.

WF_UNICONIFY set.

Unused

CO\ICDU‘I-bQ)I\)b—‘Ol

©
=
o

ap_gout2is current unused.

ap_gout3is a bitmap of supported window behaviors (if a
bit is set, it is supported) as follows:

B

it Behaviour

0 Iconifier gadget present.

1 Bottomer gadget present.
2 SHIFT-click sends window to bottom.
3 “hot” close box supported.
4-15 Unused

ap_gout4 is currently unused.

THE ATARI

COMPENDIUM

6.52 — Application Services Library - AES Function Reference

AES_MESSAGE

12

AES Extended Messages

ap_goutl is a bitmap of extra messages supported (if a bit
is set, it is supported) as follows:

@
=

Message
WM_NEWTOP is meaningful.

WM_UNTOPPED is sent.

WM_ONTOP is sent.

AP_TERM is sent.

Shutdown and resolution change messages.
CH_EXIT is sent.

WM_BOTTOM is sent.

WM_ICONIFY is sent.

WM_UNICONIFY is sent.
WM_ALLICONIFY is sent.

10-15 Unused

tO(XJ\lO’)U‘Ib(.OI\Jl—‘Ol

ap_gout2 is a bitmap of extra messages supported.
Current all bits are unused.

ap_gout3is a bitmap indicating message behaviour (if a bit
is set, the behaviour exists) as follows:

Bit Message
0 WM_ICONIFY message gives coordinates.
1-15 Unused

ap_gout4 is currently unused.

AES_OBJECT

13

AES Extended Objects

ap_goutl is 0 if 3D objects are not supported or 1 if they
are.

ap_gout2is 0 if objc_sysvar() is not present, 1 if
MultiTOS v1.01 objc_sysvar() is present, or 2 if extended
objc_sysvar() is present.

ap_gout3is 0 if the system font is the only font supported or
1 if GDOS fonts are also supported.

ap_gout4 is reserved for OS extensions.

AES_FORM

14

AES Form Support

ap_goutlis 0O if flying dialogs’ are not supported or 1 if they
are.

ap_gout2is 0O if keyboard tables are not supported or 1 if
Mag!X style keyboard tables are supported.

ap_gout3is 0 if the last cursor position from objc_edit() is
not returned or 1 if it is.

ap_gout4 is currently reserved.

THE ATARI

COMPENDIUM

appl_init() — 6.53

BINDING intin[0] = ap_gtype;
crys_if(0x82);
*ap_goutl = intout[1];
*ap_gout2 = intout[2];
*ap_gout3 = intout[3];
*ap_gout4 = intout[4];

return intout[0];
RETURN VALUE appl_getinfo() returns 1 if an error occurred or 0 otherwise.
VERSION NOTES Using anap_gtypevalue of 4 and above is only supported aB0$ version 4.1.

COMMENTS Many of theap_gtypereturn values identify features ®0S not supported by
Atari but for the benefit of third-party vendors. You should contact the appropriate
third-party for documentation on these functions.

SEE ALSO appl_init()

appl_init()
WORD appl_init(VOID)

appl_init() should be the first function called in any application that intends to use

GEM calls.

OPCODE 10 (Ox0A)

AVAILABILITY All AES versions.

PARAMETERS The function as prototyped accepts no parameters, however, all ‘C’ compilers use
this call to set up internal information as well as to update the applications’ global
array.

BINDING return crys_if(OxOA);

RETURN VALUE appl_init() returns the applications’ global identifier if successful or -1 if the AES
cannot register the application. If successful, the global identifier should be stored
in a global variable for later use.

Besides the return value, tA&S fills in the application’s global array (to
reference the global array see your programming languages’ manual).

Name ‘ global[x] ‘Meaning

THE ATARI COMPENDIUM

6.54 — Application Services Library - AES Function Reference

_AESversion AES version number.

_AESnumapps Number of concurrent applications possible (normally 1).
MultiTOS will return -1.

_AESapid 2 Application identifier (same as appl_init() return value).

_AESappglobal 3-4 LONG global available for use by the application.

_AESrscfile 5-6 Pointer to the base of the resource loaded via
rsrc_load() .

— 7-12 Reserved

_AESmaxchar 13 Current maximum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

_AESminchar 14 Current minimum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

VERSION NOTES See above.
SEE ALSO appl_exit()

appl_read()

WORD appl_read(ap_id length, messagg
WORD ap_id length;

VOIDP messagg

appl_read() is designed to facilitate inter-process communication between
processes running under tAES. The call will halt the application until a
message of sufficient length is available (see version notes below).

OPCODE 11 (Ox0B)

AVAILABILITY All AES versions.

PARAMETERS ap_idis your application identifier as returned &gpl_init(). lengthis the length
(in bytes) of the message to redssagés a pointer to a memory buffer where
the incoming message should be copied to.

BINDING intin[0] = ap_id;
intin[1] = length;

RETURN VALUE

addrin[0] = message;

return crys_if(Ox0B);

appl_read() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

appl_search() — 6.55

VERSION NOTES

COMMENTS

SEE ALSO

If the AES version is 4.0 or higher a@gppl_getinfo() indicates that this feature is
supportedap_idtakes on an additional meaningAPR_NOWAIT (-1) is

passed instead af_id, appl_read() will return immediately if no message is
currently waiting.

Normally this call is not useévnt_multi() or evnt_mesag(Js used instead for
standard message receptiappl_read() is required for reading messages that are
long and/or of variable length.

It is recommended that message lengths in multiples of 16 bytes be used.

appl_write()

appl_search()

WORD appl_search(mode fname, type ap_id)

WORD mode
CHAR *fname

WORD *type*ap_id

OPCODE

AVAILABILITY

PARAMETERS

appl_search()provides a method of identifying all of the currently running
processes.

18 (0x12)

Available only inAES versions 4.0 and above wheppl_getinfo() indicates its
presence.

modespecifies the search mode as follows:

Name mode Meaning
APP_FIRST 0 Return the filename of the first process
APP_NEXT 1 Return the filename of subsequent processes

fnameshould point to a memory location at least 9 bytes long to hold the 8
character process filename found andNkB.L byte.typeis a pointer to a
WORD into which will be placed the process type as follows:

Name type Meaning
APP_SYSTEM 0x01 System process
APP_APPLICATION 0x02 Application
APP_ACCESSORY 0x04 Accessory
APP_SHELL 0x08

THE ATARI COMPENDIUM

6.56 — Application Services Library - AES Function Reference

Thetypeparameter is actually a bit mask so it is possible that a process containing
more than one characteristic will appear. The currently running shell process
(usually the desktop) will return a valueAJPP_APPLICATION |APP_SHELL
(Ox0A).

ap_idis a pointer to a word into which will be placed the processes’ application
identifier.

addrin[0] = fname;

addrin[1] = type;

addrin[2] = ap_id;

return crys_if(0x12);

RETURN VALUE appl_search()returns 0 if no more applications exist or 1 when more processes
exist that meet the search criteria.

appl_tplay()

WORD appl_tplay(mem num, scale)
VOIDP mem
WORD num, scale

appl_tplay() plays back events originally recorded wagpp!_trecord().

OPCODE 14 (OxOE)
AVAILABILITY All AES versions.
PARAMETERS memis a pointer to an array 8VNTREC structures (seappl_trecord()). num

indicates the number 88VNTREC's to play back.

scaleindicates on a scale of 1 to 10000 how fas¥h8& will attemptto play

back your recording. A value of 100 will play it back at recorded speed. A value
of 200 will play the events back at twice the recorded speed, and 50 will play
back the events at half of the recorded speed. Other values will respond
accordingly.

BINDING |nt|n[0] = num;
intin[1] = scale;

addrin[0] = mem;

return crys_if(OXOE);

THE ATARI COMPENDIUM

appl_trecord() — 6.57

RETURN VALUE

CAVEATS

SEE ALSO

appl_tplay() always returns 1 meaning no error occurred.

This function does not work correctly &S versions less than 1.40 without a
patch program available from Atari Corp.

appl_trecord()

appl_trecord()

WORD appl_trecord(mem num)

VOIDP mem
WORD num;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

appl_trecord() recordsAES events for later playback.
15 (OXOF)
All AES versions.

mempoints to an array dfumEVNTREC structures into which th8ES will
record events as indicated here:

typedef struct pEvntrec
WORD ap_event;

LONG ap_value;
} EVNTREC;

ap_eventefines the required interpretationagf_valueas follows:

Name ap_event Event ap_value
APPEVNT_TIMER 0 Timer Elapsed Time (in milliseconds)
APPEVNT_BUTTON 1 Button low word = state (1 = down)

high word = # of clicks
APPEVNT_MOUSE 2 Mouse low word = X pos

high word =Y pos
APPEVNT_KEYBOARD 3 Keyboard bits 0-7: ASCII code

bits 8-15: scan code

bits 16-31: shift key state

intin[0] = num;
addrin[0] = mem;

return crys_if(OX0F);

THE ATARI COMPENDIUM

6.58 — Application Services Library - AES Function Reference

RETURN VALUE appl_trecord() returns the number of events actually recorded.

CAVEATS This function does not work correctly &S versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_tplay()

appl_write()

WORD appl_write(ap_id length, msg)
WORD ap_id length;

VOIDP msg
appl_write() can be used to send a message to a valid message pipe.

OPCODE 12 (0x0C)

AVAILABILITY All AES versions.

PARAMETERS ap_idis the application identifier of the process to which you wish to send the
messagdengthspecifies the number of bytes present in the mesgsghis a
pointer to a memory buffer with at led@ngthbytes available.

BINDING intin[0] = ap_id;

intin[1] = length;
addrin[0] = msg;

return crys_if(Ox0C);

RETURN VALUE appl_write() returns 0 if an error occurred or greater than 0 if the message was
sent successfully.

VERSION NOTES As of AES version 1.40, desk accessories may $NdSELECTED messages
to the desktop to trigger desktop functions.

As of AES version 4.00 you can usbel_write(7,..) to ‘broadcast’ a message to
all processes running with the exception of AlisS itself, the desktop, and your
own application. Seghel_write() for details.

COMMENTS It is recommended that you always send messages in 16 byte blocks using a
WORD array of 8 elements as tA&S does.

SEE ALSO appl_read(), shel_write()

THE ATARI COMPENDIUM

Event Library

TheEvent Libraryconsists of a group of system calls which are used to monitor system messages
including mouse clicks, keyboard usage, menu bar interaction, timer calls, and mouse tracking. The
library consists of the following calls:

e evnt_button()
e evnt_dclick()
e evnt_keybd()
e evnt_mesag()
e evnt_mouse()
e evnt_multi()

e evnt_timer()

e evnt_button()

THE ATARI COMPENDIUM

evnt_button() — 6.61

evnt_button()

WORD evnt_button(clicks, mask state mx, my, button, kstate)
WORD clicks, mask state
WORD *mx, *my, *button, *kstate

OPCODE

AVAILABILITY

PARAMETERS

evnt_button() releases control to the operating system until the specified mouse
button event has occurred.

21 (0x15)
All AES versions.

clicks specifies the number of mouse-clicks that must occur before returning.
maskspecifies the mouse buttons to wait for as follows:

Name mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08 Other buttons (0x08 is the mask for the button to

the immediate left of the middle button. Masks
continue leftwards).

statespecifies the button state that must occur before returning as follows:

mask Meaning

0x00 All buttons released
0x01 Left button depressed
0x02 Right button depressed
0x04 Middle button depressed
0x08 etc...

mXis a pointer to &YORD which upon return will contain the x-position of the
mouse pointer at the time of the eveny.is a pointer to ¥/ORD which upon
return will contain the y-position of the mouse pointer at the time of the event.

buttonis a pointer to ¥/ORD which upon return will contain the mouse button
state as defined Btate

kstateis a pointer to &/ORD which upon return will contain the current status

THE ATARI COMPENDIUM

6.62 — Event Library - AES Function Reference

of the keyboard shift keys. The value is a bit-mask defined as follows:

Name \E [Key
K_RSHIFT 0x01 | Right Shift
K_LSHIFT 0x02 Left Shift
K_CTRL 0x04 Control
K_ALT 0x08 Alternate

BINDING |nt|n[0] = CliCkS;
intin[1] = mask;
intin[2] = state;

crys_if(0x15);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE Upon exit,evnt_button() returns aVORD indicating the number of times the
mouse button state matchgidte

COMMENTS A previously undocumented feature of this call is accessed by logically OR’ing
themaskparameter with 0x100. This causes the call to return when independent
buttons are depressed. For exampl®aakvalue of 0x03 will return when both
the left and right mouse buttons are depressetagkvalue of 0x103 will cause
the call to return when either button is depressed.

SEE ALSO evnt_multi()

evnt_dclick()

WORD evnt_dclick(new, flag)
WORD new flag;

evnt_dclick() sets the mouse double-click response rate. This call is global, and
thus, affects all applications.

OPCODE 26 (0x1A)
AVAILABILITY All AES versions.
PARAMETERS If flag is EDC_INQUIRE (0), newis ignored and the current double-click rate is

returned. Iflag is EDC_SET (1), newspecifies the new double-click rate as

THE ATARI COMPENDIUM

evnt_keybd() - 6.63

BINDING

RETURN VALUE

COMMENTS

follows:

Response

Slowest

A WNELO

Fastest

intin[0] = new;
intin[1] = flag;

return crys_if(Ox1A);
evnt_dclick() returns the newly set or current double-click rate basdégn
Because this setting is global for all applications, Atari has strongly recommended

that developers use this canly where appropriate (such as in a configuration
CPX like the General Setup CPX included WiGONTROL).

evnt_keybd()

WORD evnt_keybd(VOID)

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

SEE ALSO

evnt_keybd() relinquishes program control to the operating system until a valid
keypress is available in the applications’ message pipe.

20 (0x14)
All AES versions.

None

return crys_if(0x14);

evnt_keybd()returns a 16-bit value containing the ASCII code of the key entered
in the lower eight bits and the scan code in the upper 8-bits.

TOS versions released at or above 2.06 and 3.06 disabled reception of keys 1
through 9 on the numeric keypad when used in conjunction with the alternate key.
Users may now enter the full range of ASCII values by holding déwrtyping

in the decimal ASCII code, and then releasingitfiekey. These keys, therefore,
should not be used by applications. The standard numeric keypad is still available.

evnt_multi()

THE ATARI COMPENDIUM

6.64 — Event Library - AES Function Reference

evnt_mesag()

WORD evnt_mesag(nsg)

WORD *msg

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

evnt_mesag(yeleases control to the operating system until a valid system
message is available in the applications’ message pipe.

23 (0x17)
All AES versions.

msgis a pointer to an array ofMORD’ s to be used as a message buffer.

addrin[0] = msg

return crys_if(Ox17);

The return value is currently reserved by Atari and currently is defined as 1. The
arraymsgis filed in with the following values:

THE ATARI COMPENDIUM

evnt_mesag() - 6.65

Index ’ Description Possible Values #
msg[0] Message Type MN_SELECTED 10
WM_REDRAW 20
WM_TOPPED 21
WM_CLOSED 22
WM_FULLED 23
WM_ARROWED 24
WM_HSLID 25
WM_VSLID 26
WM_SIZED 27
WM_MOVED 28
WM_UNTOPPED 30
WM_ONTOP 31
WM_BOTTOM 33
WM_ICONIFY 34
WM_UNICONIFY 35
WM_ALLICONIFY 36
WM_TOOLBAR 37
AC_OPEN 40
AC_CLOSE 41
AP_TERM 50
AP_TFAIL 51
AP_RESCHG 57
SHUT_COMPLETED 60
RESCH_COMPLETED 61
AP_DRAGDROP 63
SH_WDRAW 72
CH_EXIT 90
msg[1] The application identifier of the Any valid ap_id.
sending application.
msg[2] The length of the message beyond | Currently all system messages return 0
16 bytes (use appl_read() toread | inthis slot. Only user-defined
the excess). messages utilize a higher value.

THE ATARI COMPENDIUM

6.66 — Event Library - AES Function Reference

Each system message can be interpreted as follows:

Message
MN_SELECTED

Extended Information

A menu item has been selected by the user. msg[3] contains the
object number of the menu title and msg/[4] contains the object
number of the menu item.

As of AES version 4.0 (and when indicated by appl_getinfo()),
msg[5] and msg[6] contain the high and low word, respectively, of
the object tree of the menu item. msg[7] contains the parent object
index of the menu item.

WM_REDRAW

This message alerts an application that a portion of the screen
needs to be redrawn. msg[3] contains the handle of the window to
redraw. msg[4-7] are the x, y, w, and h respectively of the ‘dirtied’
area.

When the message is received the window contents should be
drawn (or a representative icon if the window is iconified).

WM_TOPPED

This message is sent when an application window which is currently
not the top window is clicked on by the user. msg/[3] contains the
handle of the window.

You should use wind_set(handle, WF_TOP, msg/3], 0, 0, 0) to
actually cause the window to be topped.

WM_CLOSED

This message is sent when the user clicks on a windows’ close
box. msg[3] contains the handle of the window to close.

You should react to this message with wind_close() .

WM_FULLED

This message is sent when the user clicks on a windows' full box. If
the window is not at full size, the window should be resized using
wind_set(handle, WF_CURRXYWH,... to occupy the entire screen
minus the menu bar (see wind_get()).

If the window was previously ‘fulled’ and has not been resized since,
the application should return the window to its previous size.

THE ATARI COMPENDIUM

evnt_mesag() - 6.67

WM_ARROWED

This message is sent to inform an application that one of its slider
gadgets has been clicked on.

A row or column message is sent when a slider arrow is selected.
A ‘page’ message is sent when a darkened area of the scroll bar is
clicked. This usually indicates that the application should adjust the
window’s contents by a larger amount than with the row or column
messages.

msg[3] indicates which action was actually selected as follows:

Name Value Meaning
WA_UPPAGE Page Up
WA_DNPAGE 1 Page Down
WA_UPLINE 2 Row Up
WA_DNLINE 3 Row Down
WA_LFPAGE 4 Page Left
5
6

o

WA_RTPAGE Page Right
WA_LFLINE Column Left
WA_RTLINE 7 Column Right

WM_HSLID

This message indicates that the horizontal slider has been moved.
msg/[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.

WM_VSLID

This message indicates that the vertical slider has been moved.
msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.

WM_SIZED

This message occurs when the user drags the window sizing
gadget. msg[3] contains the window handle. msg[4-7] indicate the
X, Y, w, and h respectively of the new window location.

Use wind_set(handle, WF_CURRXYWH,... to actually size the
window.

WM_SIZED and WM_MOVED usually share common handling
code.

WM_MOVED

This message occurs when the user moves the window by dragging
the windows'’ title bar. msg[3] contains the handle of the window
being moved. msg[4-7] indicate the X, y, w, and h respectively of the
new window location.

Use wind_set(handle, WF_CURRXYWH,...) to actually move the
window.

WM_MOVED and WM_SIZED usually share common handling
code.

WM_UNTOPPED

This message is sent when the current window is sent behind one
or more windows as the result of another window being topped.
msg[3] contains the handle of the window being untopped.

The application need take no action. The message is for
informational use only.

THE ATARI COMPENDIUM

6.68 — Event Library - AES Function Reference

WM_ONTOP

This message is sent when an applications’ window is brought to
the front on a multitasking AES. msg[3] is the handle of the window
being brought to the front.

This message requires no action, it is for informational purposes
only.

WM_BOTTOM

This message is sent when the user shift-clicks on the window’s
(specified in msg[3]) mover bar to indicate that the window should
be sent to the bottom of the window stack by using wind_set() with
a parameter of WF_BOTTOM.

WM_ICONIFY

This message is sent when the user clicks on the SMALLER
window gadget. msg[3] indicates the handle of the window to be
iconified. msg[4-7] indicate the X, y, w, and h of the iconified
window.

If the iconified window represents a single window this message
should be responded to by using wind_set() with a parameter of
WF_ICONIFY.

WM_UNICONIFY

This message is sent when the user double-clicks on an iconified
window. msg[3] indicates the handle of the window to be iconified.
msg[4-7] indicate the X, y, w, and h of the original window.

This message should be responded to by using wind_set() with a
parameter of WF_UNICONIFY.

WM_ALLICONIFY

This message is sent when the user CTRL-clicks on the SMALLER
window gadget. msg[3] indicates which window’s gadget was
clicked. msg[4-7] indicates the position at which the new iconified
window should be placed.

The application should respond to this message by closing all open
windows and opening a new iconified window at the position
indicated which represents the application.

WM_TOOLBAR

This message is sent when a toolbar object is clicked. msg[3]
contains the handle of the window containing the toolbar.

msg[4] contains the object index of the object clicked. msg[5]
contains the number of clicks. msg[6] contains the state of the
keyboard shift keys at the time of the click (as in evnt_keybd()).

AC_OPEN

This message is sent when the user has selected a desk accessory
to open. msg[4] contains the application identifier (as returned by
appl_init()) of the accessory to open.

AC_CLOSE

This message is sent to a desk accessory when the accessory
should be closed. msg[3] is the application identifier (as returned
by appl_init()) of the accessory to close.

Do not close any windows your accessory had open, the system will
do this for you. Also, do not require any feedback from the user
when this is received. Treat this message as a ‘Cancel’ from the
user.

THE ATARI COMPENDIUM

evnt_mesag() - 6.69

AP_TERM This message is sent when the system requests that the application
terminate. This is usually the result of a resolution change but may
also occur if another application sends this message to gain total
control of the system.

The application should shut down immediately after closing
windows, freeing resources, etc... msg[5] indicates the reason for
the shut down as follows:

AP_TERM (50) = Just shut down.
AP_RESCHG (57) = Resolution Change.

If for some reason, your process can not shut down you must inform
the AES by sending an AP_TFAIL (51) message by using
shel_write() mode 10 (see shel_write()).

Note: Desk Accessories wil always be sent AC_CLOSE
messages, not AP_TERM.

AP_TFAIL This message should be sent to the system (see shel_write())
when an application has received an AP_TERM (50) message and
cannot shut down.

msg[0] should contain AP_TFAIL and msg/1] should contain the
application error code.

AP_RESCHG This message is actually a sub-command and is only found as a
possible value in the AP_TERM (50) message (see above).

SHUT_COMPLETED This message is sent to the application which requested a
shutdown when the shutdown is complete and was successful.

RESCH_COMPLETE This message is sent to an application when a resolution change it

D requested is completed. msg/[3] contains 1 if the resolution change
was successful and 0 if an error occurred.
AP_DRAGDROP This message indicates that another application wishes to initiate a

drap and drop session. msg[3] indicates the handle of the window
which had an object dropped on it or -1 if no specific window was
targeted.

msg[4-5] contains the X and Y position of the mouse when the
object was ‘dropped’. msg[6] indicates the keyboard shift state at
the time of the drop (as in evnt_keybd()).

msg[7] is a two-byte ASCII packed pipe identifier which gives the
file extension of the pipe to open.

For more information about the drag & drop protocal, see Chapter
2: GEMDOS.

SH_WDRAW This message is sent to the Desktop to ask it to update an open
drive window. msg[3] should contain the drive number to update (0
=A;, 1=B:)or -1 to update all windows.

CH_EXIT This message is sent when a child process that the application has
started, returns. msg/3] contains the child’s application identifier
and msg[4] contains its exit code.

VERSION NOTES ~ WM_UNTOPPED, WM_ONTOP , AP_TERM, AP_TFAIL | AP_RESCHG,
SHUT_COMPLETED, RESCH_COMPLETED, andCH_EXIT are new as of

THE ATARI COMPENDIUM

6.70 — Event Library - AES Function Reference

AES version 4.0.

WM_BOTTOM , WM_ICONIFY , WM_UNICONIFY , WM_ALLICONIFY
andWM_TOOLBAR are new as oAES version 4.1.

No lower versiorAES will send these messages.

The existence (or acceptance) of these messages should also be checked for by
usingappl_getinfo().

SEE ALSO evnt_multi()

evnt_mouse()

WORD evnt_mousef(flag, x, y, w, h, mx, my, button, kstate)
WORD flag, x, y, w, h;
WORD *mx, *mx, *button, *kstate

evnt_mouse()releases control to the operating system until the mouse enters or
leaves a specified area of the screen .

OPCODE 22 (0x16)

AVAILABILITY All AES versions.

PARAMETERS flag specifies the event to wait for as follows:
Name ‘ Value Meaning
MO_ENTER 0 Wait for mouse to enter rectangle.
MO_LEAVE 1 Wait for mouse to leave rectangle.

The rectangle to watch is specifiediry, w, h. mxandmy are WORD pointers
which will be filled in with the final position of the mouse.

buttonis aWORD pointer which will be filled in upon return with the final state
of the mouse button as definedeivnt_button().

kstateis aWORD pointer which will be filled in upon return with the final state
of the keyboard shift keys as definedirnt_button().

intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

THE ATARI COMPENDIUM

evnt_multi() - 6.71

RETURN VALUE

COMMENTS

SEE ALSO

crys_if(0x16);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];
The return value of this function is reserved. Currently it always returns 1.

Theevnt_multi() function can be used to watch two mouse/rectangle events as
opposed to one.

evnt_multi()

evnt_multi()

WORD evnt_multi(eventsbclicks bmask bstate m1flag, m1x, mly, miw, m1lh, m2flag, m2x, m2y,
m2w, m2h, msg locount, hicount, mx, my, ks, kc, mc)
WORD events bclicks, bmask bstate m1flag, m1x, mly, m1w, m1lh, m2flag, m2x, m2y, m2w, m2h;

WORD *msg

WORD locount, hicount;
WORD *mx, *my, *ks, *kc, *mc;

OPCODE

AVAILABILITY

PARAMETERS

evnt_multi() suspends the application until a valid message that the application is
interested in occurs. This call combines the functionaligvof_button(),
evnt_keybd(), evnt_mesag()evnt_mouse() andevnt_timer() into one call.

This call is usually the cornerstone of GEM applications that must process
system events.

25 (0x19)
All AES versions.

eventss a bit mask which tells the function which events your application is
interested in. You should logically ‘OR’ any of the following values together:

Name Mask Function

MU_KEYBD 0x01 Wait for a user keypress.

MU_BUTTON 0x02 Wait for the specified mouse button state.
MU_M1 0x04 Wait for a mouse/rectangle event as specified.
MU_M2 0x08 Wait for a mouse/rectangle event as specified.

THE ATARI COMPENDIUM

6.72 — Event Library - AES Function Reference

BINDING

RETURN VALUE

VERSION NOTES

CAVEATS

MU_MESAG 0x10 Wait for a message.

MU_TIMER 0x20 Wait the specified amount of time.

For usage ofclicks bmask bstatg mx my, kc, andks, you should consult
evnt_button().

For usage ofnlflag mix mly miw mlh m2flag m2x m2y m2w andm2h
consultevnt_mouse()

For usage ofnsg seeevnt_mesag()

For usage ofocountandhicount seeevnt_timer().

intin[0] = events;
intin[1] = bclicks;
intin[2] = bmask;
intin[3] = bstate;
intin[4] = m1flag;
intin[5] = m1x;
intin[6] = m1y;
intin[7] = mlw;
intin[8] = m1h;
intin[9] = m2flag;
intin[10] = m2x;
intin[11] = m2y;
intin[12] = m2w;
intin[13] = m2h;
intin[14] = locount;
intin[15] = hicount;

addrin[0] = msg;
crys_if(0x19);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];
*kc = intout[5];
*mc = intout[6];

return intout[0];

The function returns a bit mask of which events actually happene@egrits

This may be one or more events and your application should be prepared to handle
each.

The only facet obvnt_multi() which has changed froAES version 4.0 is that

which relates t@vnt_mesag() For further information you should consult that

section.

UnderTOS 1.0, calling this function from a desk accessory withi\ke TIMER

THE ATARI COMPENDIUM

evnt_timer() - 6.73

SEE ALSO

mask andocountandhicountbeing equal to 0 could hang the system.

evnt_button(), evnt_keybd(), evnt_mesag(), evnt_mouse(), evnt_timer()

evnt_timer()

WORD evnt_timer(locount, hicount)
WORD locount, hicount;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

evnt_timer() releases control to the operating system until a specified amount of
time has passed.

24 (0x18)
All AES versions.

locountis the low word of a 32-bit time value specified in milliseconds.
hicountis the high portion of that 32-bit value.

intin[0] = locount;
intin[1] = hicount;

return crys_if(0x18);
The return value is reserved and is currently always 1.

UnderTOS 1.0, calling this function from a desk accessory with a both parameters
having a value of 0 will hang the system.

This function should not be relyed on as an accurate clock. The time specified is
used as a minimum time value only and the function will return at some point after
that duration has passed.

evnt_multi()

THE ATARI COMPENDIUM

Form Library

TheForm Library contains utility functions for the use and control of dialog boxes, alert boxes, and user
input. The members of thkeorm Library are:

form_alert()
form_button()
form_center()
form_dial()
form_do()
form_error()
form_keybd()

THE ATARI COMPENDIUM

form_alert() — 6.77

form_alert()

WORD form_alert(default, alertstr)
WORD default,

CHAR *alertstr,
form_alert() displays a standardized alert box and returns the user’s selection.
OPCODE 52 (0x34)
AVAILABILITY All AES versions.
PARAMETERS defaultcontains the number of the exit button which is to be made default (1-3).

alertstr contains a formatted string as follows: “[#][Alert Text][Buttons]”.

specifies the icon to display in the alert as follows:

‘ Icon Displayed

0 No Icon

‘Alert Text'is a text string of as many as 5 lines composed of up to 30 characters
each. Each line is separated by a ‘|’ character.

‘Buttons’is a text string to define as many as 3 buttons up to 10 characters each. If

only one button is used, its text may be as long as 30 characters. Again, each button
is separated by a ‘|’ character

THE ATARI COMPENDIUM

6.78 — Form Library - AES Function Reference

BINDING intin[0] = default;
addrin[0] = alertstr;
return crys_if(0x34);

RETURN VALUE form_alert() returns AVORD indicating which button was used to exit by the
user (A possible value of 1-3).

VERSION NOTES Icons #4-5 are only available asAES version 4.1.

CAVEATS Several versions of th&ES have special quirks related to this function. By
following the quidelines below you should avoid any difficulty:

1. All AES versions below 1.06 have some difficulty formatting alert strings
padded with spaces. If you want your alerts to look right ofEH
versions, do not pad any button or line with spaces with the exception below.

2. Add one space to the end of the longest text line on an alert. This will
prevent the right edge from touching the border in sB® versions.

form_button()

WORD form_button(tree, obj, clicks, newobj)
OBJECT *tree
WORD obj, clicks, newobj

form_button() is a utility function designed to aid in the creation of a custom
form_do() handler.

OPCODE 56 (0x38)

AVAILABILITY All AES versions.

PARAMETERS treeis a pointer to a valid object tree in memory you wish to process button events
for. obj is the object index inttyee which was clicked on and which needs to be
processed.

clicksis the number of times the mouse button was clicked.

newobjreturns the next object to gain edit focus or 0 if there are no editable
objects. If the top bit ofiewobjis set, this indicates thaff& UCHEXIT object
was double-clicked.

intin[1] = clicks;

THE ATARI COMPENDIUM

form_center() - 6.79

RETURN VALUE

COMMENTS

SEE ALSO

addrin[0] = tree;
crys_if(0x38);
*newobj = intout[1];

return intout[0];

form_button() returns a 0 if it exits finding aXIT or TOUCHEXIT object
selected or 1 otherwise.

To use this function properly, the application should take the following steps:
1. Monitor mouse clicks witevnt_multi() or evnt_button(),

2. When a click occurs, usdjc_find() to determine if the click occurred
over the object.

3. If so, caliform_button() with the appropriate values.

This function was not originally documented by Atari. You may have to add
bindings for this function to some earlier ‘C’ compilers.

form_do(), form_keybd()

form_center()

WORD form_center(tree x,y,w, h)

OBJECT *treeg

WORD *x, *y, *w, *h;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

form_center() is used to modify an object’s coordinates so that it will appear in
the center of the display screen.

54 (0x36)
All AES versions.

tree points to a valid®BJECT structure (see discussion of resources) which the
application wishes to have centerggdy, w, andh, return a clipping rectangle
suitable for use iobjc_draw().

addrin[0] = tree;

crys_if(0x36);

THE ATARI COMPENDIUM

6.80 — Form Library - AES Function Reference

RETURN VALUE

COMMENTS

SEE ALSO

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];
The return value is currently reserved. Currently it equals 1.

The values thdorm_center() returns in, y, w, andh, are not necessarily the

same as the object’s. These values take into account negative borders, outlining,
and shadowing. This is meant to provide a suitable clipping rectangle for
objc_draw()

objc_draw()

form_dial()

WORD form_dial(mode x1, y1, wl, hl, x2, y2, w2, h2)
WORD mode x1, y1, wl, hl, x2, y2, w2, h2;

OPCODE

AVAILABILITY

PARAMETERS

form_dial() is used to reserve and release screen space for dialog usage. In
addition, it also optionally provides grow/shrink box effects.

51 (0x33)
All AES versions.

modespecifies the action to take and the meaning of remaining parameters as
follows:

Name ‘ # Action

FMD_START 0 This mode reserves the screen space for a dialog. x2, y2, w2, and
h2, contain the coordinates of the dialog to be used (usually
obtained through form_center()).

FMD_GROW 1 This mode draws an expanding box from the coordinates specified
in x1, y1, wi, and h1 to the coordinates specified in x2, y2, w2, and
h2. This call is optional and is not required to display a dialog.

FMD_SHRINK 2 This mode draws a shrinking box from the coordinates specified in
x2, y2, w2, and h2 to the coordinates specified in x1, y1, wi, and
h1. This call is optional and is not required to display a dialog.

FMD_FINISH 3 This mode releases the screen space for a dialog (previously
reserved with mode 0). x2, y2, w2, and h2 contain the coordinates
of the space to release. One of the side-effects of this call is a
WM_REDRAW message sent to any window which the dialog was
covering.

THE ATARI COMPENDIUM

form_do() - 6.81

BINDING

RETURN VALUE

VERSION NOTES

SEE ALSO

intin[0] = mode;

intin[1] = x1;
intin[2] = y1;
intin[3] = w1;
intin[4] = h1;
intin[5] = x2;
intin[6] = y2;
intin[7] = w2;
intin[8] = h2;

return crys_if(0x33);
The function returns 0 is an error occurred or non-zero otherwise.

The AES does not currently make use of méddD_START . The call should,
however, still be executed for upward compatibility.

graf_growbox(), graf_shrinkbox()

form_do()

WORD form_do(tree, editobj)

OBJECT *treeg
WORD editobj

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

form_do() provides an automated dialog handling function to the calling
application. It suspends program control, handling all radio buttons, selectable
objects, etc... until an object with thOUCHEXIT or EXIT flag is selected.

50 (0x32)
All AES versions.

treeis a pointer to a valid object tree (see the discussion on objects in this
chapter) which contains a dialog with at least BXET or TOUCHEXIT button
or object.

editobjis the object index into tree which specifies the desired initial location of
the edit cursor (the object must be flagge&RETABLE). If the form has no text
editable fields, you should use 0.

intin[0] = editobj;
addrin[0] = tree;
return crys_if(0x32);

form_do() returns the object index of theXIT or TOUCHEXIT button which

THE ATARI COMPENDIUM

6.82 — Form Library - AES Function Reference

was selected. If the object was double clicked, bit 15 will be set. This means that
to obtain the actual object number you should mask off the result with Ox7FFF.

form_error()

WORD form_error(error)

WORD error;
form_error() displays a pre-defined error alert box to the user.
OPCODE 53 (0x35)
AVAILABILITY All AES versions.
PARAMETERS error specifies d1S-DOS error code as follows:
GEMDOS
Name Error # error Message
FERR_FILENOTFOUND -33 2 File Not Found
The application can not find the folder or
file that you tried to access.
FERR_PATHNOTFOUND -34 3 Path Not Found
The application cannot find the folder or
file that you tried to access.
FERR_NOHANDLES -35 4 No More File Handles
The application does not have room to
open another document. To make
room, close any open document that
you do not need.
FERR_ACCESSDENIED -36 5 Access Denied
An item with this name already exists in
the directory, or this item is set to read-
only status.
FERR_LOWMEM -39 8 Insufficient Memory
There is not enough memory for the
application you just tried to run.
FERR_BADENVIRON -41 10 Invalid Environment
There is not enough memory for the
application you just tried to run.
FERR_BADFORMAT -42 11 Invalid Format
There is not enough memory for the
application you just tried to run.

THE ATARI COMPENDIUM

form_keybd() - 6.83

FERR_BADDRIVE

-46

15

Invalid Drive Specification

The drive you specified does not exist.

FERR_DELETEDIR

-47

16

Attempt To Delete Working
Directory

You cannot delete the folder in which
you are working.

FERR_NOFILES

-49

18

No More Files

The application can not find the folder or
file that you tried to access.

TheGEMDOS error number can be translated intdl&-DOS code by
subtracting 31 from the absolute value of the error code.

BINDING intin[0] = error;

return crys_if(0x35);

RETURN VALUE The function returns the exit button clicked aoifm_alert(). It is, however,
insignifigant as all of the error alerts have only one button.

CAVEATS Not everyGEMDOS error code has a matching alert box.

SEE ALSO form_alert()

form_keybd()

WORD form_keybd(tree, obj, nextobj kc, newobj keyout)

OBJECT *treeg
WORD obj, nextobj, kc;
WORD *newobj *keyout

form_keybd() processes keyboard input for dialog box control. It handles special
keys such as return, escape, tab, etc... It is only of real use if you are writing a
customizedorm_do() routine.

OPCODE 55 (0x37)
AVAILABILITY All AES versions.
PARAMETERS tree points to a valid®BJECT tree containing the dialog you wish to process.

is the object index of the object which currently has edit focus (0 if noesobj
is reserved and should be 1.

THE ATARI

COMPENDIUM

6.84 — Form Library - AES Function Reference

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

kcis the value returned frogvnt_keybd() or evnt_multi() which represents the
keypresses’ scan code and ASCII value.

newobjis aWORD pointer which is filled in on function exit to be the new object
with edit focus unless tHRETURN key was pressed with a default object present in
which case it equals the object index of the object that was the default.

keyoutis the value ready to be passed onljs_edit() if no processing was
required or O if the key was processed and handled by the call.

intin[0] = obj;
intin[1] = nextobj;
intin[2] = kc;

addrin[0] = tree;
crys_if(0x37);

*newobj = intout[1];
*keyout = intout[2];

return intout[0];

form_keybd() returns 0 if a defauEXIT object was triggered by this call or 1 if
the dialog should continue to be processed.

This function was not originally documented by Atari. You may need to add
bindings for this function into some older ‘C’ compilers.

objc_edit(), form_do(), form_button()

THE ATARI COMPENDIUM

File Selector Library

TheFile Selector Librarycontains two functions for displaying the system file selector (or currently
installed alternate file selector) and prompting the user to select a file. The members of this library are:

o fsel_exinput()
o fsel_input()

THE ATARI COMPENDIUM

fsel_exinput() — 6.87

fsel _exinput()

WORD fsel_exinput(path, file, button, title)
CHAR * path, *file;

WORD *button;

CHAR *title;
fsel_exinput() displays the system file selector and offers the user an opportunity
to choose a complefeEMDOS path specification.

OPCODE 91 (0x5B)

AVAILABILITY Available fromAES version 1.40.

PARAMETERS pathshould be a pointer to a character buffer at least 128 bytes long (applications
wishing to access CD-ROM'’s should allocate at least 200 bytes). On input the
buffer should contain a comple&=MDOS path specification including a drive
specifier, path string, and wildcard mask as follows: ‘drive:\path\mask’. The mask
can be any valiGEMDOS wildcard (usually *.*).

On function exitpath contains final path of the selected file (you will have to strip
the mask).

file should point to a character buffer 13 bytes long (12 character filename plus
NULL). On input its contents will be placed on the filename line of the selector
(usually this value can simply be a empty string). On functionfégitcontains the
filename which the user selected.

buttonis a short pointer which upon function exit will contain

FSEL_CANCEL (0) if the user select6dANCEL or FSEL_OK (1) if OK,

title should be a pointer to a character string up to 30 characters long which
contains the title to appear in the file selector (usually indicates which action the
user is about to take).

addrin[1] = file;
addrin[2] = label,

crys_if(Ox5B);
*button = intout[1];

return intout[0];

RETURN VALUE fsel_exinput() returns O if an error occured and 1 otherwise.

THE ATARI COMPENDIUM

6.88 — File Selector Library - AES Function Reference

VERSION NOTES

COMMENTS

SEE ALSO

Some ‘C’ compilers (Lattice for example) provide a special function which
allowsfsel_exinput()to be used even on earl®BES versions.

The path parameter to this function should be validated to ensure that the path
actually exists prior to calling this function to prevent confusing the user.

This call should always be used as opposdsieioinput() when it is available.
Otherwise, the user has no reminder as to what function s/he is actually
undertaking.

fsel_input()

fsel _input()

WORD fsel_input(path, file, button)

CHAR * path, *file;

WORD *button;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

fsel_input() displays the system file selector and allows the user to select a valid
GEMDOS path and file.

90 (0x5A)
All AES versions.

All parameters are consistent wigel_exinput() with the notable lack ditle.

addrin[0] = path;
addrin[1] = file;

crys_if(Ox5A);
*putton = intout[1];

return intout[O];
fsel_input() returns a 0 if an error occurred or 1 otherwise.

You should never use this function in placései_exinput() whenfsel_exinput()
is available.

fsel_exinput()

THE ATARI COMPENDIUM

Graphics Library

TheGraphics Libraryprovides applications with a variety of utility functions which serve to provide
common screen effects, mouse control, and the obtaining of basic screen attributes. The functions of the
Graphics Libraryare as follows:

graf_dragbox()
graf_growbox()
graf_handle()
graf_mkstate()
graf_mouse()
graf_movebox()
graf_rubberbox()
graf_shrinkbox()
graf_slidebox()
graf_watchbox()

THE ATARI COMPENDIUM

graf_dragbox() — 6.91

graf _dragbox()

WORD graf_dragbox(w, h, sx, sy, bx, by, bw, bh, endx endy)
WORD w, h, sx, sy, bx, by, bw, bh;
WORD *endx *endy,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

graf_dragbox() allows the user to move a box frame within the constraints of a
bounding rectangle. This call is most often used to give the user a visual ‘clue’
when an object is being moved on screen.

71 (0x47)

All AES versions.

w andh specify the initial width and height of the box to drawandsy specify
the startingk andy screen coordinates.

bx, by, bw, andbh, give the coordinates of the bounding rectangle.

endxandendyareWORD pointers which, on function exit, will be filled in with
the ending x and y position of the box.

intin[0] = w;

intin[1] = h;

intin[2] = sx;
intin[3] = sy;
intin[4] = bx;
intin[5] = by;
intin[6] = bw;
intin[7] = bh;

crys_if(0x47);

*endx = intout[1];
*endy = intout[2];

return intout[O];

graf_dragbox() returns a 0 if an error occurred during execution or greater than
zero otherwise.

This call should be made only when the mouse button is depressed. The call
returns when the mouse button is released.

graf_slidebox()

THE ATARI COMPENDIUM

6.92 — Graphics Library - AES Function Reference

graf _growbox()

WORD graf_growbox(x1, y1, wl, h1, x2, y2, w2, h2)
WORD x1, y1, w2, h2, x2, y2, w2, h2;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

graf_growbox() is used to provide a visual ‘clue’ to a user by animating an
outline of a box from one set of coordinates to another. It is the complement
function tograf_shrinkbox().

73 (0x49)
All AES versions.

x1, y1, wl, andhl are the screen coordinates of the starting rectangle (where the
outline will grow from).

x2,y2, w2, andh2 are the screen coordinates of the ending rectangle (where the
outline will grow to).

intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1,;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x49);
graf_growbox() returns 0 if an error occured or non-zero otherwise.

There is currently no defined method of handling an error generated by this
function.

This function is what is called BGYEM’s form_dial(FMD_GROW ,_..

form_dial(), graf_shrinkbox()

graf_handle()

WORD graf_handle(wcell, hcell, wbox hbox);
WORD *wecell, *hcell, *wbox *hbox;

graf_handle() returns important information regarding the physical workstation

THE ATARI COMPENDIUM

graf_mkstate() - 6.93

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

SEE ALSO

currently in use by thAES.
77 (0x4D)
All AES versions.

wcellandhcell areWORD pointers which on function exit will be filled in with
the width and height, respectively, of the current system character set.

wboxandhboxareWORD pointers which on function exit will be filled in with
the width and height, respectively, of the minimum bounding bo)B6P4CHAR
character.

crys_if(0x4D);
*charw = intout[1];
*charh = intout[2];
*boxw = intout[3];
*boxh = intout[4];

return intout[0];

This function returns th€DI handle for the current physical workstation used by
the AES,

There is currently no defined method of handling an error generated by this
function.

The return value of this function is required to open a virtual screen workstation.

v_opnvwk()

graf _mkstate()

WORD graf_mkstate(mx, my, mb, ks)
WORD *mx, *my, *mb, *ks;

OPCODE

AVAILABILITY

PARAMETERS

graf_mkstate() returns information about the current state of the mouse pointer,
buttons, and keyboard shift-key state.

79 (Ox4F)
All AES versions.

mxand my ar&VORD pointers, which, on function exit will be filled in with the
current x and y coordinates of the mouse poiniéris aWORD pointer, which,

THE ATARI COMPENDIUM

6.94 — Graphics Library - AES Function Reference

on function exit will be filled in with the current button state of the mouse as
defined inevnt_button().
BINDING crys_if(0x4F);
*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];

return intout[0];
RETURN VALUE The function return is currently reserved and currently equals 1.

SEE ALSO evnt_button(), vg_mouse()

graf_mouse()

WORD graf_mouse(mode formptr)
WORD mode
VOIDP formptr;

graf_mouse()alters the appearance of the mouse form and can be used to hide and
display the mouse pointer from the screen.

OpPCODE 78 (Ox4E)
AVAILABILITY All AES versions.
PARAMETERS modeis defined as follows:
mode # Meaning Shape
ARROW 0 Change the current mouse cursor h
shape.
TEXT_CRSR 1 Change the current mouse cursor I
shape.
BUSY_BEE 2 Change the current mouse cursor ﬁ
shape.
POINT_HAND 3 Change the current mouse cursor %—-.I
shape.

THE ATARI COMPENDIUM

graf_mouse() - 6.95

FLAT_HAND 4 Change the current mouse cursor @"\
shape.

THIN_CROSS 5 Change the current mouse cursor —|—
shape.

THICK_CROSS 6 Change the current mouse cursor -+
shape.

OUTLN_CROS 7 Change the current mouse cursor -=|'}=

S shape.

USER_DEF 255 Change the current mouse cursor Form is defined
shape. below.

M_OFF 256 Remove the mouse cursor from the No shape change.
screen.

M_ON 257 Display the mouse cursor. No shape change.

M_SAVE 258 Save the current mouse form in an No shape change.
AES provided buffer. Check
appl_getinfo() for the presence of
this feature.

M_LAST 259 Restore the most recently saved Changes the shape
mouse form. Check appl_getinfo() as indicated.
for the presence of this feature.

M_RESTORE 260 Restore the mouse form to its last Changes the shape
shape. Check appl_getinfo() forthe | as indicated.
presence of this feature.

If modeis equal tdJSER_DEF, formptr must point to MFORM structure as

defined below (ifmodeis different tharJSER_DEF, formptr should beNULL):

typedef struct {
short mf_xhot;
short mf_yhot;
short mf_nplanes;
short mf_fg;
short mf_bg;
short mf_mask[16];
short mf_data[16];
} MFORM,;

mf_xhotandmf_yhotare the location of the mouse ‘hot-spot’. These values should
be in the range 0 to 15 and define what offset into the bitmap is actually the
‘point’.

mf_nplanespecifies the number of bit-planes used by the mouse pointer.
Currently, the value of 1 is the only legal value.

mf_fgandmf_bgare the mask and data colors of the mouse specified as palette

THE ATARI COMPENDIUM

6.96 — Graphics Library - AES Function Reference

BINDING

RETURN VALUE

CAVEATS

SEE ALSO

indexes. Usually these values will be 0 and 1 respectively.

mf_maskKs an array of 18VORD’ s which define the mask portion of the mouse
form. mf_datais an array of 18VORD’s which define the data portion of the
mouse form.

As of AES 4.0 and beyond, th&ES may not allow a mouse form to change to
benefit another application. If it is absolutely necessary for the application to
display its mouse form, logically OR the mode parameter MithORCE
(0x8000) and make the call.

This will force theAES to change to your mouse form. It should, however, be
done within the scope ofwind_update() sequence.

intin[0] = mode;
addrin[0] = formptr;

return crys_if(Ox4E);
graf_mouse()returns a O if an error occurred or non-zero otherwise.

There is currently no defined method of handling an error generated by this
function.

vsc_form()

graf_movebox()

WORD graf_movebox(bw, bh, sx, sy, ex, ey)
WORD bw, bh, sx, sy, ex, ey,

OPCODE

AVAILABILITY

PARAMETERS

BINDING

graf_movebox()animates a moving box between two points on the screen. It is
used to give the user a visual ‘clue’ to an action undertaken by the application.

72 (0x48)
All AES versions.
bw andbh specify the width and height, respectively, of the box to anirsstnd

Sy specify the starting coordinates of the b®xandey specify the ending
coordinates of the box.

intin[0] = bw;
intin[1] = bh;
intin[2] = sx;

THE ATARI COMPENDIUM

graf_rubberbox() - 6.97

RETURN VALUE

CAVEATS

COMMENTS

intin[3] = sy;
intin[4] = ex;
intin[5] = ey;

return crys_if(0x48);
The return value is 0 if an error occured or non-zero otherwise.
There is currently no defined method for handling an error generated by this call.

Some older ‘C’ bindings referred to this callgigf_mbox(). If your compiler
still uses this call you should update it.

graf_rubberbox()

WORD graf_rubberbox(bx, by, minw, minh, endw; endh)
WORD bx, by, minw, minh;
WORD *endw, *endh;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

graf_rubberbox() allows the user to change the size of a box outline with a fixed
starting point.

70 (0x46)
All AES versions.

bx andby define the fixed upper-left corner of the box to stretch or shrink.

minw andminhspecify the minimum width and height that the rectangle can be
shrunk to.

endwandendhareWORD pointers which will be filled in with the ending width
and height of the box when the mouse button is released.

intin[0] = bx;
intin[1] = by;
intin[2] = minw;
intin[3] = minh;
crys_if(0x46);

*endw = intout[1];
*endh = intout[2];

return intout[O];

graf_rubberbox() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

6.98 — Graphics Library - AES Function Reference

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS This function should only be entered when the user has depressed the mouse button
as it returns when the mouse button is released.

SEE ALSO graf_dragbox(), graf_slidebox()

graf_shrinkbox()

WORD graf_shrinkbox(x1, y1, wl, hl, x2, y2, w2, h2)
WORD x1, y1, wl, hl, x2, y2, w2, h2;

graf_shrinkbox() displays an animated box shrinking from one rectangle to
another. It should be used to provide the user with a visual ‘clue’ to an action. It is
the complement function @raf_growbox().

OpPCODE 74 (0x4A)
AVAILABILITY All AES versions.
PARAMETERS x1, y1, wl, andhl are the coordinates of the rectangle to shrink to.

X2, y2, w2, andh2 are the coordinates of the rectangle to shrink from.

intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(Ox4A);

RETURN VALUE The function returns O if an error occurred or non-zero otherwise

CAVEATS There is currently no defined method of handling an error from this call.
COMMENTS This function is essentially the samefersn_dial(FMD_SHRINK ...
SEE ALSO form_dial(), graf_growbox()

THE ATARI COMPENDIUM

graf_slidebox() - 6.99

graf_slidebox()

WORD graf_slidebox(tree, parent obj, orient)
OBJECT *tree
WORD parent, obj,orient;

graf_slidebox() allows the user to slide a child object within the bounds of its
parent. It is often used to implement slider controls.

OPCODE 76 (0x4C)
AVAILABILITY All AES versions.
PARAMETERS treeis pointer to the object tree containing the child and parent objects.

parentis the object index of an object which bounds the movement of the child.
child is the object index of the object which can be moved within the bounds of
parent

orient specifies the orientation of the allowed movement. 0 is horizontal (left-
right), 1 is vertical (up-down).

BINDING intin[0] = parent;
intin[1] = child;
intin[2] = orient;

addrin[0] = tree;

return crys_if(0x4C);

RETURN VALUE The function returns a value specifying the relative offset of the child within the
parent as a number between 0 and 1000.

COMMENTS This call can be used easily with sliders built into dialogs by making the slider bar
aTOUCHEXIT and calling this function when it is clicked. This call should only
be made when the mouse button is depressed as it returns when it is released.

SEE ALSO graf_movebox()

THE ATARI COMPENDIUM

6.100 — Graphics Library - AES Function Reference

graf_watchbox()

WORD graf_watchbox(tree, obj, instate outstate)
OBJECT *tree
WORD obj, instate outstate

graf_watchbox() modifies the given state of a specified object depending on
whether the pointer is within the bounds of the object or outside the bounds of the
object as long as the left mouse button is held down.

OPCODE 75 (0x4B)
AVAILABILITY All AES versions.
PARAMETERS treeis a pointer to thROOT object of the tree which contains the object you

wish to watchobj is the object index of the object to watch.

instateis theob_statg(seeobjc_change() to apply while the mouse is inside of
the bounds of the object.

outstateis theob_stateto apply while the mouse is outside of the bounds of the
object.

intin[1] = instate;
intin[2] = outstate;
addrin[Q] = tree;
return crys_if(0Ox4B);

RETURN VALUE graf_watchbox() returns a 0 if the mouse button was released outside of the
object or a 1 if the button was released inside of the object.

COMMENTS As this call returns when the mouse button is released, it should only be made
when the mouse button is depressed. This call is used interngdigmyybutton()
andform_do() and is usually only necessary if you are replacing one of these
handlers.

SEE ALSO form_button()

THE ATARI COMPENDIUM

Menu Library

TheMenu Libraryassists in the handling of system menu bars and popup menus. In addition, individual
control of menu items can also be handled through these functions. The membebeasfutdbraryare:

menu_attach()
menu_bar()
menu_icheck()
menu_ienable()
menu_istart
menu_popup()
menu_register()
menu_settings()
menu_text()
menu_tnormal()

THE ATARI COMPENDIUM

menu_attach() — 6.103

menu_attach()

WORD menu_attach(flag, tree, item, mdata)
WORD flag;

OBJECT *tree

WORD item,

MENU * mdatg

menu_attach()allows an application to attach, change, or remove a sub-menu. It
also allows the application to inquire information regarding a currently defined

sub-menu.

OPCODE 37 (0x25)

AVAILABILITY This function is only available froAES version 3.30 and above. AES
versions 4.0 and great@pp!_getinfo() should be used to determine its exact
functionality.

PARAMETERS flag indicates the action the application desires as follows:

‘ Define Meaning

0 ME_INQUIRE Return information on a sub-menu attached to the menu item
designated by tree and item in mdata.

1 ME_ATTACH Attach or change a sub-menu. mdata should be initialized by

the application.

tree and jitem should be the OBJECT pointer and index to the
menu which is to have the sub-menu attached. If mdata is
NULLPTR, any sub-menu attached will be removed.

2 ME_REMOVE Remove a sub-menu. tree and item should be the OBJECT
pointer and index to the menu item which a sub-menu was
attached to. mdata should be NULLPTR.

In all cases excepdE_REMOVE , mdatashould point to #ENU structure as
defined here:

typedef struct

OBJECT *mn_tree;

WORD mn_menu,
WORD mn_item;
WORD mn_scroll;
WORD mn_keystate;

} MENU;

TheMENU structure members are defined as follows:

THE ATARI COMPENDIUM

6.104 — Menu Library - AES Function Reference

BINDING

RETURN VALUE

CAVEATS

COMMENTS

Member Meaning

mn_tree Points to the OBJECT tree of the sub-menu.

mn_menu Is an index to the parent object of the menu items.

mn_item Is the starting menu item.

mn_scroll If SCROLL_NO (0), the menu will not scroll. If SCROLL_YES (1), and the

number of menu items exceed the menu scroll height, arrows will appear
which allow the user to scroll selections.
mn_keystate This member is unused and should be 0 for this call.

intin[0] = flag;
intin[1] = item;

addrin[0] = tree;
addrin[1] = mdata;

return crys_if(0x25);

menu_attach()returns O if an error occurred and the sub-menu could not be
attached or 1 if the operation was successful.

AES versions supportingnenu_attach()less than 4.1 contain a bug which causes
the AES to crash when changing or removing a sub-menu attachment.

At present, if you wish to attach a scrolling menu, the menu items must be
G_STRING's.

If a menu bar having attachments is removed with

menu_barf NULL , MENU_REMOVE) those attachments are removed by the
system and must be reattached with this call if the menu is redisplayed at a later
time.

Several recommendations regarding sub-menus should be adhered to:

1. Menu items which will have sub-menus attached to them should be
padded with blanks to the end of the menu.

2. Menu items which will have sub-menus attached to them should not have
a keyboard equivalent.

3. Sub-menus will display faster if a byte-boundary is specified.

4. Sub-menus will be shifted vertically to align the start object with the
main menu item which it is attached to.

5. Sub-menus will always be adjusted to automatically fit on the screen.

6. There can be a maximum of 64 sub-menu attachments per process
(attaching a sub-menu to more than one menu item counts as only one
attachment).

7. Do not attach a sub-menu to itself.

8. As a user-interface guideline, there should only be one level of sub-
menus, though it is possible to have up to four levels currently.

9. menu_istart() works only on sub-menus attached witanu_attach()

THE ATARI COMPENDIUM

menu_bar() - 6.105

SEE ALSO

menu_istart(), menu_settings() menu_popup()

menu_bar()

WORD menu_bar(tree, mode)

OBJECT *treg
WORD mode

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

menu_bar() displays a specializ€dBJECT tree on the screen as the application
menu. It can also be used to determine the owner of the currently displayed menu
bar in a multitaskind\ES.

30 (Ox1E)

All AES versions.

treeis a pointer to a@BJECT tree which has been formatted for use as a system
menu (for more information on tK@BJECT format of a menu see the discussion
on objects in this chapter).

modeis a flag indicating the action to take as follows:

Name mode Meaning

MENU_REMOVE 0 Erase the menu bar specified in tree.
MENU_INSTALL 1 Display the menu bar specified in tree.
MENU_INQUIRE -1 Return the AES application identifier of the process

which owns the currently displayed system menu. tree
can be set to NULL. The AES version must be greater
than 4.0 and appl_getinfo() must indicate that this is
feature is supported.

intin[0] = mode;

addrin[0] = tree;

return crys_if(Ox1E);

If modeis MENU_REMOVE (0) orMENU_INSTALL (1), the return value
indicates an error condition where >0 means no error and 0 means an error
occurred. In inquiry modérode= MENU_INQUIRE (-1)), menu_bar() returns

the application identified of the process which owns the currently displayed menu
bar.

The safest way to redraw an application’s menu bar is to redraw it only if you are

THE ATARI COMPENDIUM

6.106 — Menu Library - AES Function Reference

sure it is currently the active menu bar. In a non-multitaskfng, this is a
certainty, however, in a multitaskifg=S you should first inquire the menu bar’s
owner within the scope ofwind_update(BEG_UPDATE)call to prevent the
system from swapping active menu bars while in the process of redrawing.

SEE ALSO menu_ienable() menu_icheck()

menu_icheck()

WORD menu_icheck(tree, obj, check)
OBJECT *tree

WORD obj, check

menu_icheck()adds/removes a checkmark in front of a menu item.

OPCODE 31 (Ox1F)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the current mefishould be the object index of

a menu item. I€heckis UNCHECK (0), no checkmark will be displayed next to
this item whereas iftheckis CHECK (1), a checkmark will be displayed.

BINDING intin[0] = obj;
intin[1] = check;
addrin[0] = obj;

return crys_if(Ox1F);
RETURN VALUE menu_icheck()returns O if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_ienable()

WORD menu_ienable(tree, obj, flag)

OBJECT *tree
WORD obj, flag;

menu_ienable()enables/disables menu items.
OPCODE 32 (0x20)

THE ATARI COMPENDIUM

menu_istart() - 6.107

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu to afibyis the object index of the
menu item to modifyflag should be set tPISABLE (0) to disable the item or
ENABLE (1) to enable it.

intin[1] = flag;
addrin[0] = tree;

return crys_if(0x20);
RETURN VALUE menu_icheck(returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_istart()

WORD menu_istart(flag, tree, imenu, item))
WORD flag;

OBJECT *treeg

WORD imenu, item;

menu_istart() shifts a sub-menu that is attached to a menu item to align vertically
with the specified object in the sub-menu.

OPCODE 38 (0x26)
AVAILABILITY This function is only available witAES versions 3.30 and above.
PARAMETERS flag should be set tMIS_SETALIGN (1) to modify the alignment of a sub-menu

and its parent menu item.flag is set toMIS_GETALIGN (0), no modifications
will be made, however the sub-menu item index which is currently aligned with its
parent menu item is returned.

tree points to the object tree of the menu to alteenuspecifies the object within
the submenu which will be aligned with menu itéem

intin[1] = imenu;
intin[2] = item;
addrin[0] = tree;

return crys_if(0x26);

THE ATARI COMPENDIUM

6.108 — Menu Library - AES Function Reference

RETURN VALUE menu_istart() returns 0 if an error occurred or the positive object index of the
sub-menu item which is currently aligned with its parent menu item.

COMMENTS Generally, a sub-menu is aligned so that the currently selected sub-menu item is
aligned with its parent menu.

SEE ALSO menu_attach()

menu_popup()

WORD menu_popup(menu, Xpos ypos mdata)

MENU *menu

WORD xpos ypos

MENU *menu,
menu_popup()displays a popup menu and returns the user’s selection.

OPCODE 36 (0x24)

AVAILABILITY This function is only available witAES versions 3.30 and above.

PARAMETERS menupoints to &MENU structure (defined underenu_attach() containing the
popup menuxposandyposspecify the location at which the upper-left corner of
the starting object will be placed.

If the function returns a value of 1, tNEENU structure pointed to bydatawill

be filled in with the ending state of the menu (including the object the user
selected).

As of AES version 4.1, ilmenu.mn_scroik set toSSCROLL_LISTBOX (-1)

when this function is called, a drop-down list box will be displayed instead of a
popup menu.

Drop-down list boxes will only display a scroll bar if at least eight entries exist. If
you want to force the scroll bar to appear, pad the object with €m@yRING
objects with theiDISABLED flag set.

BINDING intin[0] = xpos;

intin[1] = ypos;

addrin[0] = menu;
addrin[1] = mdata;

return crys_if(0x24);

RETURN VALUE menu_popup()returns O if an error occurred or 1 if successful.

THE ATARI COMPENDIUM

menu_register() - 6.109

SEE ALSO

menu_attach(), menu_settings()

menu_register()

WORD menu_register(ap_id title)

WORD ap_id
char *title;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

menu_register(registers desk accessories in the ‘Desk’ menu and renames
MultiTOS applications which appear there.

35 (0x23)
All AES versions.

ap_idspecifies the application identifier of the application to regité.points
to aNULL -terminated string containing the title which is to appear in the ‘Desk’
menu for the accessory or application.

If ap_idis set toREG_NEWNAME (-1) then the process name giveitiiie will

be used as the new process name. The new process name should be exactly eight
characters terminated withtNULL . Pad the string with space characters if
necessary.

intin[0] = ap_id;
addrin[0] = title;
return crys_if(0x23);

menu_register(returns a -1 if an error occurred or the menu identifier otherwise.

Applications other than desk accessories should not call this function unless they
are running undeviultitoOS .

Desk accessories should store the return value as this is the value that will be
included with futureAC_OPEN messages to identify the accessory.

Applications running unddviultiTOS may use this function to provide a more
functional title for the ‘Desk’ menu than the program’s filename.

Callingmenu_register()with a parameter ;SREG_NEWNAME s used to
change the internal process name of the application returrgepbyind() and
appl_search() This is useful if you know another process will attempt to find your

THE ATARI COMPENDIUM

6.110 — Menu Library - AES Function Reference

application as a specific process name and the user may have renamed your
application filename (normally used as the process name).

menu_settings()

WORD menu_settings(flag, set)

WORD flag;
MN_SET *set
menu_settings()changes the global settings for popup and scrollable menus.
OPCODE 39 (0x27)
AVAILABILITY This function is only available witAES versions 3.30 and above.
PARAMETERS If flag is 0, current settings are read into Mi¥_SET structure pointed to bset
If flag is 1, current settings are set from Mi_SET structure pointed to bget
MN_SET is defined as follows:
typedef struct
/* Submenu-display delay in milliseconds */
LONG display;
/* Submenu-drag delay in milliseconds */
LONG drag;
/* Single-click scroll delay in milliseconds*/
LONG delay;
/* Continuous-scroll delay in milliseconds */
LONG speed;
/* Menu scroll height (in items) */
WORD height;
} MN_SET;
BINDING intin[0] = flag;

addrin[0] = set;
return crys_if(0x27);
RETURN VALUE menu_settings(always returns 1.
COMMENTS The defaults set bypenu_settings()are global and not local to an application.

You should therefore limit your use of this function to system applications like
CPX’s and so forth.

THE ATARI COMPENDIUM

menu_text() - 6.111

menu_text()

WORD menu_text(tree, obj, text)
OBJECT *tree

WORD obj;

char *text

menu_text() changes the text of a menu item.

OPCODE 34 (0x22)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the menu bhi.specifies the object index of the

menu item to changéeXxtpoints to dNULL -terminated character string containing
the new text.

addrin[0] = tree;
addrin[1] = text;

return crys_if(0x22);

RETURN VALUE menu_text()returns a 0 if an error occurred or non-zero otherwise.

COMMENTS The new menu item text must be no larger than the original menu item text.

menu_tnormal()

WORD menu_tnormal(tree, obj, flag)
OBJECT *tree
WORD obj, flag;

menu_tnormal() highlights/un-highlights a menu-title.

OPCODE 33 (0x21)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the medDj specifies the object index of the title

to changeflag should be set thllIGHLIGHT (0) to display the title in reverse
(highlighted) otUNHIGHLIGHT (1) to display it normally.

THE ATARI COMPENDIUM

6.112 — Menu Library - AES Function Reference

BINDING intin[0] = obj
intin[1] = flag

addrin[1] = tree

return crys_if(0x21);
RETURN VALUE menu_tnormal() returns O if an error occurred or non-zero otherwise.

COMMENTS This call is usually called by an application aftédld_SELECTED message is
received and processed to return the menu title to normal.

THE ATARI COMPENDIUM

Object Library

TheObject Libraryis responsible for the drawing and manipulatioABS objects such as boxes,
strings, icons, etc. See earlier in this chapter for a complete discus&ib® objects. Thébject
Library includes the following functions:

objc_add()
objc_change()
objc_delete()
objc_draw()
objc_edit()
objc_find()
objc_offset()
objc_order()
objc_sysvar()

THE ATARI COMPENDIUM

objc_add() — 6.115

objc_add()

WORD objc_add(tree, parent, child)
OBJECT *tree

WORD parent, child;

objc_add() establishes a child object’s relationship to its parent.

OPCODE 40 (0x28)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree to modifiarentandchild specify the parent and

child object to update.

BINDING intin[0] = parent;
intin[1] = child;

addrin[0] = tree;
return crys_if(0x28);

RETURN VALUE objc_add() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS In order for this function to work, the object to be added must be already be a
member of théBJECT array. This function simply updates tle_next,
ob_head andob_tail structure members 6IBJECTs in the object tree. These
fields should be initialized tHIL (0) in the child to be added.

SEE ALSO objc_order(), objc_delete()

objc_change()

WORD objc_change(tree, obj, rsvd ox, oy, ow, oh, newstatedrawflag)
OBJECT *tree

WORD obj, rsvd, ox, oy, ow, oh, newstatedrawflag;

objc_change()changes the display state of an object.

OPCODE 47 (Ox2F)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the object to modij.specifies the object to

THE ATARI COMPENDIUM

6.116 — Object Library - AES Function Reference

modify.

rsvdis reserved and should be 0.

ox, 0y, ow, andoh specify the clipping rectangle if the object is to be redrawn.
newstatespecifies the new state of the object (sanebastatg.

If drawflagis NO_DRAW (0) the object is not redrawn whereadri@wflagis
REDRAW (1) the object is redrawn.

BINDING intin[0] = obj;
intin[1] = rsvd;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;
intin[6] = newstate;
intin[7] = drawflag;

addrin[0] = tree;

return crys_if(Ox2F);
RETURN VALUE objc_change(returns 0 if an error occurred and non-zero otherwise.

COMMENTS In general, if not redrawing the object, it is usually quicker to manipulate the
object tree directly.

SEE ALSO objc_draw()

objc_delete()

WORD objc_delete(tree, obj)

OBJECT *tree
WORD obj;
objc_delete()removes an object from an object tree.
OPCODE 41 (0x29)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree of the object to del@lgis the object to be deleted.
BINDING intin[0] = obyj;

addrin[0] = tree;

THE ATARI COMPENDIUM

objc_draw() — 6.117

RETURN VALUE

COMMENTS

SEE ALSO

return crys_if(0x29);

objc_delete()returns 0 if an error occurred or non-zero otherwise.

This function does not move other objects in the tree structure, it simply unlinks the
specified object from the object chain by updating the other obfggtgext

ob_heagandob_tail structure members.

objc_add()

objc_draw()

WORD objc_draw(tree, obj, depth ox, oy, ow, oh)

OBJECT *treg

WORD obj, depth ox, oy, ow, oh;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

objc_draw() renders a\ES object tree on screen.
42 (0x2A)
All AES versions.

tree specifies the object tree to dravhj specifies the object index at which
drawing is to begin.

depthspecifies the maximum object depth to draw (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

0x, oy, ow, andoh specify arAES style rectangle which defines the clip rectangle
to enforce during drawing.

intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;

addrin[0] = tree;

return crys_if(Ox2A);

objc_draw() returns 0 if an error occurred or non-zero otherwise.

THE ATARI COMPENDIUM

6.118 — Object Library - AES Function Reference

objc_edit()

WORD objc_edit(tree, obj, ke, idx, mode)

OBJECT *tree

WORD obj, kc;

WORD *idx

WORD mode
objc_edit() allows manual control of an editable text field.

OPCODE 46 (0x2E)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the editable objeidb modify. mode
specifies the action of the call and the meaning of the other parameters as
follows:
mode Value Meaning
ED_START 0 Reserved for future use. Do not call.

ED_INIT 1 Display the edit cursor in the object specified. kc is ignored.
The WORD pointed to by idx is filled in with the current
index of the edit cursor in the field.

ED_CHAR 2 A key has been pressed that needs special processing. k¢
contains the keyboard scan code in the high byte and ASCII
code in the low byte. idx points to the current index of the
text cursor in the field. idx will be updated as a result of this
call.

ED_END 3 Turn off the text cursor.

intin[1] = Kkc;

intin[2] = *idx;

intin[3] = mode;
addrin[0] = tree;
crys_if(Ox2E);

*idx = intout[1];
return intout[O];

RETURN VALUE objc_edit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function is usually used in conjunction wieim_keybd() in a custom
form_do() handler.

THE ATARI COMPENDIUM

objc_find() — 6.119

SEE ALSO form_keybd()

objc_find()

WORD objc_find(tree, obj, depth ox, oy)
OBJECT *tree

WORD obj, depth ox, oy,

objc_find() determines which object is found at a given coordinate.

OPCODE 43 (0x2B)
AVAILABILITY All AES versions.
PARAMETERS tree specifies the object tree containing the objects to search. The search starts

from object indexobj forward in the object tree.

depthspecifies the depth in the tree to search (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox andoy specify the coordinate to search at.

BINDING intin
ntin

[
[
intin[
intin[

epth

OOQ.O

addrin[0] = tree;

return crys_if(0x2B);

RETURN VALUE objc_find() returns the object index of the object found at coordinatssy) or
-1 if no object is found.

objc_offset()

WORD objc_offset(tree, obj, ox, oy)
OBJECT *tree

WORD obj;

WORD *ox, *oy,

objc_offset() calculates the true screen coordinates of an object.

OPCODE 44 (0x2C)

THE ATARI COMPENDIUM

6.120 — Object Library - AES Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

All AES versions.

tree specifies the object tree containidlgj. TheWORDs pointed to bypx andoy
will be filled in with the true X and Y screen position of objebj.

intin[0] = obj;
addrin[0] = tree;
crys_if(0x2C);

*ox = intout[1];
*oy = intout[2];

return intout[0];
objc_offset()returns 0 if an error occurred or non-zero otherwise.

Theob_xandob_ystructure members of objects give an offset from their parent as
opposed to true screen location. This call is used to determine a true screen
coordinate.

The values returned gypjc_offset() coupled with th@b_widthandob_height
members do not take into account negative borders, shadowing, or sculpturing.
When redrawing an object you are responsible for using these values to and the
object’s state to compensate for a correct clipping rectangle.

objc_draw()

objc_order()

WORD objc_order(tree, obj, pos)

OBJECT *tree
WORD obj, pos

OPCODE
AVAILABILITY

PARAMETERS

objc_order() changes the position of an object relative to other child objects of
the same parent.

45 (0x2D)
All AES versions.

tree specifies the object tree of obj@dtj which is to be moved0Sspecifies the
new position of the object as follows:

THE ATARI COMPENDIUM

objc_sysvar() — 6.121

BINDING

RETURN VALUE

COMMENTS

Name pos Meaning
OO_LAST -1 Make object the last child.
OO_FIRST 0 Make object the first child.
— 1 Make object the second child.
— 2— etc...
intin[0] = obj;
intin[1] = pos;

addrin[0] = tree;

return crys_if(0x2D);

objc_order() returns 0 if an error occurred or non-zero otherwise.

objc_order() does not actually move structure elements in memory. It works by

updating th€OBJECT tree’sob_headob_tail, andob_nexfields to ‘move’ the
OBJECT in the tree hierarchy.

objc_sysvar()

WORD objc_sysvar(mode which, inl, in2, outl, out2)
WORD mode which, in1, in2;
WORD *outl, *out2;

OPCODE

AVAILABILITY

PARAMETERS

objc_sysvar()returns/modifies information about the color and placement of 3D
object effects.

48 (0x30)
Available as ofAES version 3.40.

modedetermines whether attributes should be read or modified. A value of
SV_INQUIRE (0) will read the current values whereas a valuB\ofSET (1)

will modify the current valuesvhichdetermines what attribute you wish to read
or modify.

When reading valueB)1 andin2 are unused. The two return values are placed in
theWORDs pointed to byutl andout2 When modifying valuegutl andout2
are unusednl andin2 specify the new values for the attribute.

The meanings of the two input/output values referred to as vall and val2 are as
follows:

THE ATARI COMPENDIUM

6.122 — Object Library - AES Function Reference

BINDING

RETURN VALUE

COMMENTS

Name which Values

LK3DIND 1 If vall is 1, the text of indicator objects does move when selected,
otherwise, if O, it does not.

If val2 is 1, the color of indicator objects does change when
selected, otherwise, if 0, it does not.

LK3DACT 2 Same as LK3DIND for activator objects.

INDBUTCOL vall specifies the default color for indicator objects. val2 is
unused.

ACTBUTCOL 4 vall specifies the default color for activator objects. val2 is
unused.

BACKGRCO 5 vall specifies the default color for background objects. val2 is

L unused.

AD3DVAL 6 vall specifies the number of extra pixels on each horizontal side of
an indicator or activator object needed to accomodate 3D effects.
val2 specifies the number of extra pixels on each vertical side of
an indicator or activator object needed to accomodate 3D effects.
This setting may only be read, not modified.

intin[0] = mode;
intin[1] = which;
intin[2] = in1;
intin[3] = in2;

crys_if(0x30);

*outl = intout[1];
*out2 = intout[2];

return intout[0];

objc_sysvar()returns 0 if unsuccessful or non-zero otherwise.

Applications should not uggbjc_sysvar()to change these settings since all
changes are global. On§PXs or Desk Accessories designed to modify these
parameters should.

THE ATARI

COMPENDIUM

Resource Library

TheResource Librarys responsibe for the loading/unloading of resource files and the manipulation of
resource objects in memory. The members oRgource Libranare:

rsrc_free()
rsrc_gaddr()
rsrc_load()
rsrc_obfix()
rsrc_rcfix()
rsrc_saddr()

THE ATARI COMPENDIUM

rsrc_free() — 6.125

rsrc_free()

WORD rsrc_free(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

rsrc_free() releases memory allocated tsyc_load() for an application’s
resource.

111 (Ox6F)

All AES versions.

return crys_if(Ox6F);

rsrc_free() returns O if an error occurred or non-zero otherwise.

rsrc_free() should be called before an application which loaded a resource using
rsrc_load() exits.

rsrc_load()

rsrc_gaddr()

WORD rsrc_gaddr(type index, addr)

WORD type index;

VOIDPP addr,

OPCODE

AVAILABILITY

PARAMETERS

rsrc_gaddr() returns the address of an object loaded vgith_load().
112 (0x70)
All AES versions.

The pointer pointed to bgddr will be filled in with the address of thedex"
resource object of typ&pe Valid values foitypeare as follows:

Name type ‘ Resource Object
R_TREE 0 Object tree
R_OBJECT 1 Individual object
R_TEDINFO 2 TEDINFO structure
R_ICONBLK 3 ICONBLK structure
R_BITBLK 4 BITBLK structure
R_STRING 5 Free String data

THE ATARI COMPENDIUM

6.126 — Resource Library - AES Function Reference

R_IMAGEDATA 6 Free Image data
R_OBSPEC 7 ob_spec field within OBJECT s
R_TEPTEXT 8 te_ptextwithin TEDINFOs
R_TEPTMPLT 9 te_ptmplt within TEDINFOs
R_TEPVALID 10 te_pvalid within TEDINFOs
R_IBPMASK 11 ib_pmask within ICONBLK s
R_IBPDATA 12 ib_pdata within ICONBLK s
R_IBPTEXT 13 ib_ptext within ICONBLK s
R_BIPDATA 14 bi_pdata within BITBLK s
R_FRSTR 15 Free string
R_FRIMG 16 Free image

BINDING intin[0] = type;

intin[1] = index;
crys_if(0x70);
*addr = addrout[0];
return intout[0];

RETURN VALUE rsrc_gaddr() returns a 0 if the addressaddr is valid or non-zero if the object
did not exist.

COMMENTS This function is most often used to obtain the addre©BJECT trees, ‘free’
strings, and ‘free’ images after loading a resource file.

SEE ALSO rsrc_saddr()

rsrc_load()

WORD rsrc_load(fname)
char *fname

rsrc_load() loads and allocates memory for the named resource file.

OPCODE 110 (Ox6E)
AVAILABILITY All AES versions.
PARAMETERS fnameis a character pointer tdNUJLL -terminatedGEMDOS file specification

of the resource to load.

BINDING addrin[0] = fname;

THE ATARI COMPENDIUM

rsrc_obfix() — 6.127

RETURN VALUE

COMMENTS

SEE ALSO

return crys_if(OX6E);
rsrc_load() returns 0O if successful or non-zero if an error occurred.

In addition to loading the resource, @BJECT coordinates are converted from
character based coordinates to screen coordinates.

rsrc_free()

rsrc_obfix()

WORD rsrc_obfix(tree, obj)

OBJECT *treeg
WORD obj;

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

rsrc_obfix() converts an object’s coordinates from character-based to pixel-
based.

114 (0x72)
All AES versions.

tree specifies thé©BJECT tree containing the objeabj to convert.
intin[0] = obj;

addrin[0] = tree;

return crys_if(0x72);

rsrc_obfix() returns a 0 if successful or non-zero otherwise.

All objects in *.RSC’ files have their coordinates based on character positions
rather than screen coordinates to allow an object tree to be shown in any
resolution. This function converts those character coordinates to pixel coordinates
based on the current screen resolution.

rsrc_load(), rsrc_rcfix()

THE ATARI COMPENDIUM

6.128 — Resource Library - AES Function Reference

rsrc_rcfix()

WORD rsrc_rcfix(rc_header)
VOID *rc_header

rsrc_rcfix() fixes up coordinates and memory pointers of raw resource data in

memory.
OPCODE 115 (0x73)
AVAILABILITY Available only inAES versions 4.0 and greater. The presence of this call should

also be checked for usiagpl_getinfo().

PARAMETERS rc_headeris a pointer to an Atari Resource Construction Set (or compatible)
resource file header in memory.

BINDING addrin[0] = rc_header;
return crys_if(0x73);

RETURN VALUE rsrc_rcfix() returns a 0 if successful or non-zero otherwise.

COMMENTS If a resource has already been loaded wgith_load() it must be freed by
rsrc_free() prior to this call. In addition, resources identified with this call must

likewise be freed before program termination or another resource file is needed.

SEE ALSO rsrc_obfix()

rsrc_saddr()

WORD rsrc_saddr(type index, addr)
WORD type index;

VOID * addr,
rsrc_saddr() sets the address of a resource element.
OPCODE 113 (0x71)
AVAILABILITY All AES versions.
PARAMETERS typespecifies the type of resource element to set as defined reneglegaddr().

indexspecifies the index of the element to modify (0 bas#tiir specifies the
actual address that will be placed in the appropriate data structure.

THE ATARI COMPENDIUM

rsrc_saddr() — 6.129

BINDING intin[0] = type;
intin[1] = index;

addrin[0] = addr;

return crys_if(0x71);
RETURN VALUE rsrc_saddr() returns 0 if an error occurred or non-zero otherwise.

COMMENTS In most cases, direct manipulation of the structures involved is quicker and easier
than using this call.

SEE ALSO rsrc_gaddr(), rsrc_load()

THE ATARI COMPENDIUM

Scrap Library

TheScrap Libraryis used to maintain the location of the clipboard directory used for interprocess data
exchange. The members of therap Libraryare:

e scrp_read()
e scrp_write()

THE ATARI COMPENDIUM

scrp_read() — 6.133

scrp_read()

WORD scrp_read(cpath)

char *cpath

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

CAVEATS

COMMENTS

scrp_read()returns the location of the current clipboard directory.
80 (0x50)
All AES versions.

cpathis a pointer to a character buffer of at least 128 bytes into which the
clipboard path will be placed.

addrin[0] = cpath;

return crys_if(0x50);

scrp_read()returns 0 if the clipboard path had not been set or non-zepaiif
was properly updated.

The system scrap directory is a global resource. Some programs incorrectly call
scrp_write() with a pathandfilename when only a pathname should be used. The
following is an example of a correctly formatigphthargument:

C:\CLIPBRD\

Unfortunately, not all programs adhere exactly to this standard. For this reason,
programs reading this information fragarp_read() should be especially careful
that the information returned is parsed correctly. In addition, don’t count on a
trailing backslash or the existence of a drive specification.

If a value of O is returned and the application wishes to write a scrap to the
clipboard you should follow these steps:

* Create a folder \CLIPBRD\' on the root directory of the user’s boot
drive (‘C:" or ‘A%).

* Write your scrap to the directory as ‘SCRAP.???’ where ‘??7?’ signifies
the type of information contained in the file.

* Allow other applications to access this information by calling
scrp_write() with the new clipboard path. For example
“C:\CLIPBRD\".

A detailed discussion of the proper clipboard data exchange protocol, including
information about a scrap directory semaphore usefulMWhTOS | is given
earlier in this chapter.

THE ATARI COMPENDIUM

6.134 — Scrap Library - AES Function Reference

SEE ALSO

scrp_write()

scrp_write()

WORD scrp_write(cpath)

char *cpath

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

scrp_write() sets the location of the clipboard directory.
81 (0x51)
All AES versions.

cpathpoints to aNULL -terminated path string containing a valid drive and path
specification with a closing backslash. The following is an example of a correctly
formattedcpathargument:

C:\CLIPBRD\
addrin[0] = cpath;
return crys_if(0x51);

scrp_write() returns O if an error occurred or non-zero otherwise.

The scrap directory is a global resource. This call should only be used in two
circumstances as follows:

* when used to set the default location of the scrap directory using a CPX
or accessory at bootup or by the user’s request.

* whenscrp_read()returns an error value and you need to create the
clipboard to write information to it.

The clipboard data exchange protocol is discussed in greater detail earlier in this
chapter.

scrp_read()

THE ATARI COMPENDIUM

Shell Library

TheShell Librarycontains several miscellaneous functions most often used GjfeDesktop and
other ‘Desktop-like’ applications. Other applications may, however, need specific functionSbethe
Library for various tasks. The members of $teell Libraryare:

shel_envrn()
shel_find()
shel_get()
shel_put()
shel_read()
shel_write()

THE ATARI COMPENDIUM

shel_envrn() — 6.137

shel_envrn()

WORD shel_envrn(valug, name)

char **valug
char *name

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

shel_envrn()searches the current environment string for a specific variable.
125 (0x7D)
All AES versions.

valuepoints to a character pointer which will be filled in with the address of the
first character in the environment string following the string givendsge If the
string given bynameis not foundyaluewill be filled in with NULL . For

instance, suppose the current environment looked like this:

PATH=C:\;D:\;E:\

A call made teshel_envrn()with namepointing to the string ‘PATH="would set
the pointer pointed to byalueto the string ‘C:\;D:\;E:\' above.

addrin[0] = value;
addrin[1] = name;

return crys_if(Ox7D);
shel_envrn()currently always returns 1.

AES versions prior to 1.4 only accepted semi-colons as separators between
multiple ‘PATH="arguments. Newer versions accept commas as well.

The character string pointed to by name should include the name of the variable
andthe equals sign.

shel_find()

WORD shel_find(buf)

char *buf;

OPCODE

shel_find() searches for a file along tA&S's current path, any paths specified by
the ‘PATH’ environmental variable, and the calling application’s path.

124 (0x7C)

THE ATARI COMPENDIUM

6.138 — Shell Library - AES Function Reference

AVAILABILITY All AES versions.

PARAMETERS bufshould point to a character buffer of at least 128 characters and contain the
filename of the file to search for on entry. If the function was able to find the file,
the buffer pointed to bpuf will be filled in with the full pathname of the file upon
return.

return crys_if(0Ox7C);
RETURN VALUE shel_find() returns 0 if the file was not found or non-zero otherwise.

SEE ALSO shel_write()

shel _get()

WORD shel_get(buf, length)

char *buf;

WORD length;
shel_get()copies the contents of tA&ES’s shell buffer (normally the
‘DESKTOP.INF' or ‘NEWDESK.INF’ file) into the specified buffer.

OPCODE 122 (0x7A)

AVAILABILITY All AES versions.

PARAMETERS buf points to a buffer at lealstngthbytes long into which th8ES should copy
the shell buffer into.

addrin[0] = buf;

return crys_if(Ox7A);
RETURN VALUE shel_get()returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES AES versions prior to version 1.4 had a shell buffer size of 1024 bytes. Versions
1.4 to 3.0 had a shell buffer size of 4192 bytes.

In AES versions 4.0 or greater the shell buffer is no longer of a fixed size. When
appl_getinfo() indicates that this feature is supporietigthcan be specified as
SHEL_BUFSIZE (-1) to return the size of the current shell buffer.

THE ATARI COMPENDIUM

shel_put() — 6.139

SEE ALSO shel_put()

shel put()

WORD shel_put(buf, length)

char *buf;

WORD length;
shel_put() copies information into thBES's shell buffer.

OPCODE 123 (0x7B)

AVAILABILITY All AES versions.

PARAMETERS buf points to a user memory buffer from whieingthbytes are to be copied into
the shell buffer.

addrin[0] = buf;
return crys_if(Ox7B);

RETURN VALUE shel_put() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES Prior toAES version 4.0 this function would only copy as many bytes as would fit
into the current buffer. As of version 4.0, theS will dynamically allocate more

memory as needed (up to 32767 bytes) for the shell buffer.

COMMENTS TheDesktopuses the information in the shell buffer for several purposes.
Applications should not use the shell buffer for their own purposes.

SEE ALSO shel_get()

shel read()

WORD shel_read(name tail)
char *name *tail;

shel_read()is used to determine the current application’s parent and the command
tail used to call it.

OPCODE 120 (0x78)

THE ATARI COMPENDIUM

6.140 — Shell Library - AES Function Reference

AVAILABILITY All AES versions.

PARAMETERS namepoints to a buffer which upon exit will be filled in with the complete file
specification of the application which launched the current process.

tail will likewise be filled in with the initial command line. The first BYTE of the
command line indicates the length of the string which actually begin&#jld..

BINDING addrin[0] = name;
addrin[1] = tail;

return crys_if(0x78);

RETURN VALUE shel_read()returns 0 if an error occurred or non-zero otherwise.

CAVEATS shel_read()actually returns the arguments to the $istl_write() so if a process
wasPexec()ed, the information returned will be incorrect.

shel write()

WORD shel_write(mode wisgr, wiscr, cmd, tail)
WORD mode wisgr, wiscr,
char *cmd, *tail;

shel_write() is a multi-purpose function which handles the manipulation and
launching of processes.

OpPCODE 121 (0x79)

AVAILABILITY All AES versions. IFPAES versions 4.0 and abovappl_getinfo() can be used to
determine the highest legal value foodeas well as the functionality of extended
modebits.

PARAMETERS modespecifies the meaning of the rest of the parameters as follows:

Name mode | Meaning
SWM_LAUNCH 0 Launch a GEM or TOS application or GEM desk

accessory depending on the extension of the file. This
mode is only available as of AES version 4.0. wisgris not
used in mode SWM_LAUNCH (0). When the lower eight
bits of mode are SWM_LAUNCH (0),
SWM_LAUNCHNOW (1), or SWM_LAUNCHACC (3),
appropriate bits in the upper byte may be set to enter
‘extended’ mode. The bits in the upper byte are assigned
as follows:

THE ATARI COMPENDIUM

shel_write() — 6.141

Name Mask Meaning
SW_PSETLIMIT 0x100 Initial Psetlimit()
SW_PRENICE 0x200 Initial Prenice()
SW_DEFDIR 0x400 Default Directory
SW_ENVIRON 0x800 Environment

If the upper byte is empty, extended mode is not entered
and cmd specifies the filename (to search for the file with
shel_find()) or the complete file specification. Otherwise,
if any extended bits are set, cmd points to a structure as
shown below.

typedef struct _shelw

char *newcmd;
LONG psetlimit;
LONG prenice;
char *defdir;
char *env;

} SHELW;

_shelw.newemd points to the filename formatted in the
manner indicated above.

If bit 8 (SW_PSETLIMIT) of mode is set, _shelw.psetlimit
contains the maximum memory size available to the
process.

If bit 9 of mode is (SW_PRENICE) set, _shelw.prenice
contains the process priority of the process to launch.

If bit 10 of mode (SW_DEFDIR) is set, _shelw.defdir
points to a character string containing the default directory
for the application begin launched.

If bit 11 of mode (SW_ENVIRON) is set, _shelw.env
points to a valid environment string for the process.

tail points to a buffer containing the command tail to pass
to the process. If wiscris set to CL_NORMAL (0), tail is
passed normally, otherwise, if wiscris set to CL_PARSE
(1), the AES will parse tail and set up an ARGV
environment string.

modes SWM_LAUNCH (0), SWM_LAUNCHNOW (1),
and SWM_LAUNCHACC (3) return the AES id of the
started process. If a O is returned, then the process was
not launched.

Under MultiTOS , processes are launched concurrently
with their parent. An exit code is returned in a CH_EXIT
message when the child terminates. See evnt_mesag() .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

THE ATARI COMPENDIUM

6.142 — Shell Library - AES Function Reference

SWM_LAUNCHNOW 1

Launch a GEM or TOS application based on the value of
wisgr. If wisgris TOSAPP (0), the application will be
launched as a TOS application, otherwise if wisgris
GEMAPP (1), the application will be launched as a GEM
application. For the meaning of other parameters, see
mode SWM_LAUNCH (0). The extended bits in mode
are only supported by AES versions of at least 4.0.

Parent applications which launch children using this mode
are suspended under MultiTOS .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

SWM_LAUNCHACC 3

Launch a GEM desk accessory. For the meaning of other
parameters, see mode SWM_LAUNCH (0). This mode is
only supported by AES versions of at least 4.0.

SWM_SHUTDOWN 4

Manipulate ‘Shutdown’ mode. Shutdown mode is usually
used prior to a resolution change to cause system
processes to terminate. wisgr, cmd, and tail are ignored
by this call. The value of wiscr determines the action this
call takes as follows:

Name wiscr.
SD_ABORT 0
SD_PARTIAL 1
SD_COMPLETE 2

Meaning
Abort shutdown mode

Partial shutdown mode
Complete shutdown mode

During a shutdown, processes which have registered
themselves as accepting AP_TERM messages will be
sent them and all accessories will be sent AC_CLOSE
messages. In addition, in complete shutdown mode,
AP_TERM messages will also be sent to accessories.

Shutdown mode may be aborted but only by the original
caller.

The status of the shutdown is sent to the calling processes
by AES messages. See evnt_mesag() .

This mode is only supported by AES versions greater than
or equal to 4.0.

SWM_REZCHANGE 5

Change screen resolution. wisgr is the work station ID
(same as in AES global[13]) of the new resolution. No
other parameters are utilized.

This mode is only recognized as of AES version 4.0.

SWM_BROADCAST 7

Broadcast an AES message to all processes. cmd should
point to an 8 WORD message buffer containing the
message to send. All other parameters are ignored.

This mode is only recognized as of AES version 4.0.

THE ATARI

COMPENDIUM

shel_write() — 6.143

SWM_ENVIRON 8 Manipulate the AES environment. If wisgris
ENVIRON_SIZE (0), the current size of the environment
string is returned.

If wisgris ENVIRON_CHANGE (1), cmd should point to a
environment variable to modify. If cmd points to
“TOSEXT=TOS,TTP”, that string will be added. Likewise,
“TOSEXT=" will remove that environment variable.

If wisgris ENVIRON_COPY (2), the AES will copy as
many as wiscr bytes of the current environment string into
a buffer pointer to by cmd. The function will return the
number of bytes not copied.

This mode is only recognized as of AES version 4.0.
SWM_NEWMSG 9 Inform the AES of a new message the current application
understands. wisgris a bit mask which specifies which
new messages the application understands. Currently only
bit 0 (B_UNTOPPABLE) has a meaning. Setting this bit
when calling this function will inform the AES that the
application understands AP_TERM messages. No other
parameters are used.

This mode is only recognized as of AES version 4.0.
SWM_AESMSG 10 Send a message to the AES. cmd points to an 8 WORD
message buffer containing the message to send. No other
parameters are needed.

This mode is only recognized as of AES version 4.0.

BINDING intin[0] = mode;
intin[1] = wisgr;
intin[2] = wiscr;

addrin[0] = cmd;
addrin[1] = tail;

return crys_if(0x79);

RETURN VALUE The valueshel_write() differs depending on the mode which was invoked. See
above for details.

VERSION NOTES Many new features were added a®\&fS version 4.0. For details of each, see
above.

THE ATARI COMPENDIUM

Window Library

TheWindow Libraryis responsible for the displaying and maintenand&$ windows. The members
of theWindow Libraryare:

wind_calc()
wind_close()
wind_create()
wind_delete()
wind_find()
wind_get()
wind_new()
wind_open()
wind_set()
wind_update()

THE ATARI COMPENDIUM

wind_calc() — 6.147

wind_calc()

WORD wind_calc(requestkind, x1, y1, wl, hl, x2, y2, w2, h2)
WORD requestkind, x1, y1, wi, h1;
WORD *x2, *y2, *w2, *h2;

OPCODE

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_calc() returns size information for a specific window.

108 (0x6C)

All AES versions.

requestspecifies the mode of this call.

If requestis WC_BORDER (0), X1, y1, w1, andhl specify the work area of a
window of typekind. The call then fills in th8®/ORDs pointed to b2, y2, w2,
andh2 with the full extent of the window.

If request isWC_WORK (1), x1, y1, w1, andhl specify the full extent of a
window of typekind. The call fills in theVORDs pointed to b2, y2, w2, and

h2 with the work area of the window.

kind is a bit mask of window ‘widgets’ present with the window. For a detailed
listing of these elements se#nd_create().

intin[0] = request;

intin[1] = kind,;
intin[2] = x1,;
intin[3] = y1;
intin[4] = w1;
intin[5] = h1,;

crys_if(Ox6C);

*x2 = intout[1];

*y2 = intout[2];
*w2 = intout[3];
*h2 = intout[4];

return intout[O];
wind_calc() returns 0 if an error occurred or non-zero otherwise.

wind_calc()is unable to calculate correct values when a toolbar is attached to a
window. This can be corrected, though, by adjusting the values output by this
function with the height of the toolbar.

wind_create()

THE ATARI COMPENDIUM

6.148 — Window Library - AES Function Reference

wind_close()

WORD wind_close(handle)

WORD handle

OPCODE
AVAILABILITY
PARAMETERS

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_close()removes a window from the display screen.
102 (0x66)
All AES versions.

handlespecifies the window handle of the window to close.

intin[0] = handle;

return crys_if(0x66);
wind_close()returns 0 if an error occurred or non-zero otherwise.

Upon callingwind_close()a redraw message for the portion of the screen changed
will be sent to all applications.

Callingwind_close()does not release the memory allocated to the window
structurewind_delete()must be called to permanently destroy the window and
free any memory allocated by th&S for the window. Untiwind_delete()is
called, the window may be re-opened at any time wittel_open().

wind_create(), wind_open(), wind_delete()

wind_create()

WORD wind_create(kind, x, y, w, h)
WORD kind, x, y, w, h;

OPCODE

AVAILABILITY

PARAMETERS

wind_create() initializes a new window structure and allocates any necessary
memory.

100 (0x64)
All AES versions.

kindis a bit array whose elements determine the presence of any ‘widgets’ on the

THE ATARI COMPENDIUM

wind_create() — 6.149

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

window as follows:

Name Mask Meaning

NAME 0x01 Window has a title bar.
CLOSER 0x02 Window has a close box.
FULLER 0x04 Window has a fuller box.
MOVER 0x08 Window may be moved by the user.
INFO 0x10 Window has an information line.
SIZER 0x20 Window has a sizer box.
UPARROW 0x40 Window has an up arrow.
DNARROW 0x80 Window has a down arrow.
VSLIDE 0x100 Window has a vertical slider.
LFARROW 0x200 Window has a left arrow.
RTARROW 0x400 Window has a right arrow.
HSLIDE 0x800 Window has a horizontal slider.
SMALLER 0x4000 Window has an iconifier.

The parameter kind is created by OR’ing together any desired elements.

X, ¥, w, andh, specify the maximum extents of the window. Normally this is the
entire screen area minus the menu bar (to find this aresingeget() with a
parameter ofVF_WORKXYWH). The area may be smaller to bound the
window to a particular size and location.

intin[0] = Kkind,;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

return crys_if(0x64);

wind_create()returns a window handle if successful or a negative number if it
was unable to create the window.

TheSMALLER gadget is only available as 8ES version 4.1.

A window is not actually displayed on screen with this call, you need to call
wind_open()to do that.

TOS version 1.00 and 1.02 limited applications to four windowd.®$ version
1.04 that limit was raised to seven. AMItiTOS the number of open windows
is limited only by memory and the capabilities of an application.

You should ensure that your application caNgizd_delete()for each
wind_create(), otherwise memory may not be deallocated when your application

THE ATARI COMPENDIUM

6.150 — Window Library - AES Function Reference

exits.

SEE ALSO wind_open(), wind_close(), wind_delete()

wind_delete()

WORD wind_delete(handle)

WORD handle
wind_delete()destroys the specified window and releases any memory allocated
for it.

OPCODE 103 (0x67)

AVAILABILITY All AES versions.

PARAMETERS handlespecifies the window handle of the window to destroy.

BINDING intin[0] = handle;

return crys_if(Ox67);
RETURN VALUE wind_delete()returns 0 if an error occurred or non-zero otherwise.
COMMENTS A window should by closed witivind_close()before deleting it.

SEE ALSO wind_create(), wind_open(), wind_close(), wind_new()

wind_find()

WORD wind_find(x, y)

WORD x, y;
wind_find() returns the handle of the window found at the given coordinates.
OPCODE 106 (0x6A)
AVAILABILITY All AES versions.
PARAMETERS X andy specify the coordinates to search for a window at.
BINDING intin[0] = x;

intin[1] = y;

THE ATARI COMPENDIUM

wind_get() — 6.151

return crys_if(Ox6A);

RETURN VALUE wind_find() returns the handle of the uppermost window found at locatiyarf
no window is found, the function returns 0 meaningRektop window.

COMMENTS This function is useful for tracking the mouse pointer and changing its shape
depending upon what window it falls over.

wind_get()

WORD wind_get(handle mode parml, parm2, parm3 parm4)
WORD handle mode

WORD *parml, *parm2 *parm3 *parm4;

wind_get() returns various information about a window.

OPCODE 104 (0x68)
AVAILABILITY All AES versions.
PARAMETERS handlespecifies the handle of the window to return information about (0 is the

desktop window)modespecifies the information to return and the values placed
into theWORDs pointed to byparm1 parm2 parm3 andparm4as follows:

Name mode Meaning

WF_WORKXYWH 4 parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the window's work
area.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the full extent of the
window.

WF_PREVXYWH 6 parml1, parm2, parm3, and parm4 are filled in with the x, y,

w, and h of the previous coordinates of the full extent of the
window prior to the last wind_set() call.

WF_FULLXYWH 7 parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h values specified in the wind_create() call.
WF_HSLIDE 8 parm1 is filled in with the current position of the horizontal

slider between 1 and 1000. A value of one indicates that
the slider is in its leftmost position.

WF_VSLIDE 9 parm1 is filled in with the current position of the vertical
slider between 1 and 1000. A value of one indicates that
the slider is in its uppermost position.

WF_TOP 10 parm1 is filled in with the window handle of the window
currently on top. As of AES version 4.0 (and when
appl_getinfo() indicates), parm2 is filled in with the owners
AES id, and parma3iis filled in with the handle of the window
directly below it.

THE ATARI COMPENDIUM

6.152 — Window Library - AES Function Reference

WF_FIRSTXYWH

11

parml1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the first AES rectangle in the window’s rectangle
list. If parm3 and parm4 are both 0, the window is
completely covered.

WF_NEXTXYWH

12

parm1, parm2, parm3, and parm4 are filled in with
subsequent AES rectangles for each time this function is
called until parm3 and parm4 are 0 to signify the end of the
list.

WF_NEWDESK

14

As of AES versions 4.0 (and when appl_getinfo()
indicates), this mode returns a pointer to the current
desktop background OBJECT tree. parm1 contains the
high WORD of the address and parm2 contains the low
WORD.

WF_HSLSIZE

15

parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_VSLSIZE

16

parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_SCREEN

17

This mode returns a pointer to the current AES menu/alert
buffer and its size. The pointer's high WORD is returned in
parm1 and the pointer’s low WORD is returned in parm2.
The length of the buffer is returned as a LONG with the
upper WORD being in parm3 and the lower WORD being
in parm4. Note that TOS 1.02 returns 0 in wand h by
mistake.

The menu/alert buffer is used by the AES to save the
screen area hidden by menus and alert boxes. It is not
recommended that applications use this area as its usage
is not guaranteed in future versions of the OS.

THE ATARI

COMPENDIUM

wind_get() — 6.153

WF_COLOR 18 This mode gets the current color of the window widget
specified on entry to the function in the WORD pointed to by
parm1. Valid window widget indexes are as follows
(W_SMALLER is only valid as of AES 4.1):

armi Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR
The ob_spec field (containing the color information) used
for the object when not selected is returned in the WORD
pointed to by parm2. The ob_spec field used for the object
when selected is returned in parm3.
This mode under wind_get() is only valid as of AES
version 3.30. From AES versions 4.0 and above,
appl_getinfo() should be used to determine if this mode is
supported.

WF_DCOLOR 19 This mode gets the default color of newly created windows
as with WF_COLOR above. As above, this mode under
wind_get() only works as of AES version 3.30.

As of AES version 4.1, WF_DCOLOR changes the color of
open windows unless they have had their colors explicitly
set with WF_COLOR.

WF_OWNER 20 parm1 is filled in with the AES id of the owner of the
specified window. parm2 is filled in with its open status (0 =
closed, 1 = open). parm3is filled in with the handle of the
window directly above it (in the window order list) and
parm4 is filled in with the handle of the window below it
(likewise, in the window order list).

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

THE ATARI

COMPENDIUM

6.154 — Window Library - AES Function Reference

BINDING

WF_BEVENT

24

parml1, parm2, parm3, parm4 are each interpreted as bit
arrays whose bits indicate supported window features.
Currently only one bit is supported. If bit O of the value
returned in parm1 is 1, that window has been set to be ‘un-
toppable’ and it will never receive WM_TOPPED
messages, only button clicks.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_BOTTOM

25

parmZ will be filled in with the handle of the window currently
on the bottom of the window list (it may actually be on top if
there is only one window). Note also that this does not
include the desktop window.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_ICONIFY

26

parm1 will be filled in with O if the window is not iconified or
non-zero if itis. parm2 and parm3 contain the width and
height of the icon. parm4 is unused.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_UNICONIFY

27

parml, parm2, parm3, and parm4, are filled in with the x, y,
w, and h of the original coordinates of the iconified window.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_TOOLBAR

30

parm1 and parm2 contain the high and low WORD
respectively of the pointer to the current toolbar object tree
(or NULL if none).

This mode is only available as of AES version 4.1.

WF_FTOOLBAR

31

parml, parm2, parm3, are parm4, are filled in with the x, y,
w, and h, respectively of the first uncovered rectangle of the
toolbar region of the window. If parm3 and parm4 are 0, the
toolbar is completely covered.

This mode is only available as of AES version 4.1.

WF_NTOOLBAR

32

parml, parm2, parm3, and parm4, are filled in with the x, y,
w, and h, respectively of subsequent uncovered rectangles
of the toolbar region. This mode should be repeated to
reveal subsequent rectangles until parm3 and parm4 are
found to be 0.

This mode is only available as of AES version 4.1.

/* This binding must be different to */
/* accomodate reading WF_COLOR and */

/* WF_DCOLOR

contrl[0] = Ox68;

contrl[1] = 2;
contrl[2] = 1,
contrl[3] = O;
contrl[4] = 0;

THE ATARI

*

COMPENDIUM

wind_new() — 6.155

RETURN VALUE

SEE ALSO

intin[0] = handle;
intin[1] = mode;

if(mode == WF_DCOLOR || mode == WF_COLOR)
{

intin[2] = *x;
contrl[1] = 3;

}

aes();

*x = intout[1];

*y = intout[2];

*w = intout[3];

*h = intout[4];

return intout[O];
wind_get() returns a 0 if an error occurred or non-zero otherwise.

wind_set()

wind_new()

WORD wind_new(VOID)

OPCODE

AVAILABILITY

BINDING

RETURN VALUE

COMMENTS

SEE ALSO

wind_new() closes and deletes all of the application’s windows. In addition, the
state owind_update(), and the mouse pointer hide count is reset.

109 (0x6D)

Available as ofAES version 0x0140.

return crys_if(Ox6D);

The return value is reserved and currently unused

This function should not be relied upon to clean up after an application. It was
designed for parent processes that wish to ensure that a poorly written child

process has properly cleaned up after itself.

wind_delete(), graf_mouse(), wind_update()

THE ATARI COMPENDIUM

6.156 — Window Library - AES Function Reference

wind_open()

WORD wind_open(handle x,y, w, h)

WORD handle
WORD X, y, w, h;

OPCODE
AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

wind_open() opens the window specified.
101 (0x65)
All AES versions.

handlespecifies the handle of the window to open as returnadrigy_create()
X, Y, w, andh specify the rectangle into which the rectangle should be displayed.

intin[0] = handle;

return crys_if(Ox65);

wind_open()returns a O if an error occurred or non-zero otherwise.

COMMENTS This call will also trigger &VM_REDRAW message which encompasses the
work area of the window so applications should not initially render the work area,
rather, wait for the message.

SEE ALSO wind_close(), wind_create(), wind_delete()

wind_set()

WORD wind_set(handle mode parml, parm2, parm3, parm4)
WORD handle, mode parmi, parm2, parm3 parm4;

OPCODE

AVAILABILITY

PARAMETERS

wind_set() sets various window attributes.
105 (0x69)
All AES versions.

handlespecifies the window handle of the window to modifadespecifies the
attribute to change and the meaninggainl, parm2 parm3 andparm4as
follows:

THE ATARI COMPENDIUM

wind_set() — 6.157

Name
WF_NAME

mode
2

Meaning

This mode passes a pointer to a character string
containing the new title of the window. parm1 contains
the high WORD of the pointer and parm2 contains the
low WORD.

WF_INFO

This mode passes a pointer to a character string
containing the new information line of the window.
parm1 contains the high WORD of the pointer, parm2
contains the low WORD.

WF_CURRXYWH

parml1, parm2, parm3, and parm4 specify the x, y, w,
and h of the new coordinates of the full extent of the
window.

WF_HSLIDE

parm1 specifies the new position of the horizontal slider
between 1 and 1000. A value of 1 indicates that the
slider is in its leftmost position.

WF_VSLIDE

parm1 specifies the new position of the vertical slider
between 1 and 1000. A value of 1 indicates that the
slider is in its uppermost position.

WF_TOP

10

parm1 specifies the window handle of the window to
top. Note that if multiple calls of wind_set(WF_TOP , ...
) are made without releasing control to the AES (which
allows the window to actually be topped), only the most
recent window specified will actually change position.

WF_NEWDESK

14

This mode specifies a pointer to an OBJECT tree
which is redrawn automatically by the desktop as the
background. parm1 contains the high WORD of the
pointer and parm2 contains the low WORD. To reset
the desktop background to the default, specify parm1
and parm2 as 0.

WF_HSLSIZE

15

parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

WF_VSLSIZE

16

parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

THE ATARI

COMPENDIUM

6.158 — Window Library - AES Function Reference

WF_COLOR 18 This mode sets the current color of the window widget
specified on entry in parm1. Valid window widget
indexes are as follows (W_SMALLER is only valid as

of AES 4.1):
arml Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field of the object (containing the color
information) while the window is on top is defined in
parm2. The ob_spec field for the object while the
window is not on top is defined in parm3.

This mode is only valid as of AES version 0x0300.

WF_DCOLOR 19 This mode sets the default color of newly created
windows as with WF_COLOR above. This mode only
works as of AES version 0x0300. As of AES version
4.1, this mode causes all currently displayed windows
which have not had their color explicitly set with
WF_COLOR to be changed.

WF_BEVENT 24 parml1, parm2, parm3, and parm4 are each interpreted
as hit arrays whose bits indicate supported window
features. Currently only one bit is supported. If bit O
(B_UNTOPPABLE) of parm1 is set, the window will be
set to be ‘un-toppable’ and it will never receive
WM_TOPPED messages, only button clicks.

This mode is only available as of AES versions 4.0.

WF_BOTTOM 25 This mode will place the specified window at the
bottom of the window list (if there is more than one
window) and top the new window on the top of the list.

This mode is only available as of AES version 4.0.

THE ATARI COMPENDIUM

wind_update() — 6.159

BINDING

RETURN VALUE

SEE ALSO

WF_ICONIFY

26

This mode iconifies the specified window to the X, Y,
width, and height coordinates given in parm1, parm2,
parm3, and parm4 respectively. Normally, this happens
as the result of receiving a WM_ICONIFY message.

This mode is only available as of AES version 4.1.

WF_UNICONIFY

27

This mode uniconifies the window specified, returning it
to its original X, Y, width, and height as specified in
parm1, parm2, parm3, and parm4 respectively.
Normally, this happens as the result of receiving a
WM_UNICONIFY message.

This mode is only available as of AES version 4.1.

WF_UNICONIFYXYWH

28

This mode sets the X, Y, width, and height that will be
transmitted to the window with the next
WM_UNICONIFY message that targets it. This call is
used when a window is opened in an iconified state to
give the OS a method of positioning it when it is
uniconified.

This mode is only available as of AES version 4.1.

WF_TOOLBAR

30

This mode attaches a toolbar to the specified window.
parm1 and parm2 contain the high and low WORD of
the address of the toolbar OBJECT tree respectively.
parm3 and parm4 are unused.

Set parm1 and parm2 to 0 to remove a toolbar.

intin[0] = handle;
intin[1] = mode;
intin[2] = x;
intin[3] = y;
intin[4] = w;
intin[5] = h;

return crys_if(0x69);

wind_set()returns 0 if an error occurred or non-zero otherwise.

wind_get()

wind_update()

WORD wind_update(mode)

WORD mode

OPCODE

wind_update() manages the screen drawing semaphore.

107 (0x6B)

THE ATARI

COMPENDIUM

6.160 — Window Library - AES Function Reference

AVAILABILITY

PARAMETERS

BINDING

RETURN VALUE

VERSION NOTES

COMMENTS

All AES versions.
modespecifies an action as follows:

Name ‘ mode Meaning

END_UPDATE 0 This mode resets the flag set by BEG_UPDATE and should
be called as soon as redrawing is complete. This will allow
windows to be moved and menus to be dropped down again.

BEG_UPDATE 1 Calling this mode will suspend the process until no drop-down
menus are showing and no other process is updating the
screen. This will then set a flag which guarantees that the
screen will not be updated and windows will not be moved until
you reset it with END_UPDATE.

Generally this call is made whenever a WM_REDRAW
message is received to lock the screen semaphore while

redrawing.

END_MCTRL 2 This mode releases control of the mouse to the AES and
resumes mouse click message services.

BEG_MCTRL 3 This mode prevents mouse button messages from being sent

to applications other than your own.

form_do() makes this call to lock out screen functions. Desk

accessories which display a dialog outside of a window must
use this function to prevent button clicks from falling through to
the desktop.

intin[0] = mode;

return crys_if(Ox6B);
wind_update() returns O if an error occurred or non-zero otherwise.

As of AES version 4.0, you may logically OR a maskN§p_BLOCK (0x0100)

to eitherBEG_UPDATE or BEG_MCTRL . This mask will prevent the

application from blocking if another application currently has control of the screen
semaphore. Instead, if another application has control, the function will
immediately return with an error value of 0.

This method should only be used by timing-sensitive applications such as terminal
programs in which a long redraw by another application could cause a timeout.

All wind_update() modes nest. For instance, to release the screen semaphore, the
same number dEIND_UPDATE calls must be received as wé&ieG_UPDATE

calls. It it recommended that you design your application in a manner that avoids
nesting these calls.

Both theBEG_UPDATE andBEG_MCTRL modes should be used prior to
displaying a form or popup to prevent them from being overwritten or clicks to
them being sent to other applications.

THE ATARI COMPENDIUM

wind_update() — 6.161

SEE ALSO

Always wait untilafter theBEG_UPDATE call to turn off the mouse cursor when
updating the screen to be sure you have gained control of the screen.

Applications such as slide-show viewers which require the whole screen area
(and may need to change screen modes) mawigall update() with parameters

of bothBEG_UPDATE andBEG_MCTRL to completely lock out the screen

from other applications. The application would still be responsible for saving the
screen area, manipulating video modes as necessary, restoring the screen when

done, and returning control of the screen to other applications with
END_UPDATE andEND_MCTRL .

wind_new()

THE ATARI COMPENDIUM

