
T H E A T A R I C O M P E N D I U M

AES Function Reference

T H E A T A R I C O M P E N D I U M

Application Services Library

The Application Services Library provides general use functions used in locating and working with other
resident applications in addition to providing AES initialization and termination code. The members of
the Application Services Library are:

•• appl_exit()
•• appl_find()
•• appl_getinfo()
•• appl_init()
•• appl_read()
•• appl_search()
•• appl_tplay()
•• appl_trecord()
•• appl_write()

appl_exit() – 6.47

T H E A T A R I C O M P E N D I U M

appl_exit()
WORD appl_exit(VOID)

appl_exit() should be called at the termination of any program initialized with
appl_init() .

OPCODE 19 (0x13)

AVAILABILITY All AES versions.

BINDING return crys_if(0x13);

RETURN VALUE appl_exit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The proper procedure for handling an error from this function is currently
undefined.

SEE ALSO appl_init()

appl_find()
WORD appl_find(fname)
CHAR * fname;

appl_find() searches the AES’s current process list for a program named fname
and, if present, returns the application identifier of the process.

OPCODE 13 (0x0D)

AVAILABILITY All AES versions.

PARAMETERS fname is a pointer to a null-terminated ASCII string containing a valid GEMDOS
filename (not including an extension) padded with blanks to be exactly 8
characters long (not including the NULL).

BINDING addrin[0] = fname;

return crys_if(0x0D);

RETURN VALUE appl_find() returns the application identifier of the process if it is found or -1
otherwise.

6.48 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

VERSION NOTES AES versions from 4.0 add several extensions to this call for the benefit of
MultiTOS as follows:

• If the upper word of the CHAR * is 0xFFFF, the lower word is assumed
to be the MiNT id and appl_find() will return the AES application
identifier.

• If the upper word of the CHAR * is 0xFFFE, the lower word is assumed
to be the AES application identifier and the MiNT id is returned.

• If the upper word of the CHAR * is 0x0000, the current processes’
application identifier is returned.

This functionality only exists if the AES version is 4.0 and above and
appl_getinfo() indicates that it is available.

SEE ALSO appl_write(), appl_init()

appl_getinfo()
WORD appl_getinfo(ap_gtype, ap_gout1, ap_gout2, ap_gout3, ap_gout4)
WORD ap_gtype;
WORD *ap_gout1, *ap_gout2, *ap_gout3, *ap_gout4;

appl_getinfo() returns information about the AES.

OPCODE 130 (0x82)

AVAILABILITY Available as of AES version 4.00.

PARAMETERS ap_gtype specifies the type of information to be returned in the shorts pointed to
by ap_gout1, ap_gout2, ap_gout3, and ap_gout4 as follows:

Name Value Returns

AES_LARGEFONT 0 AES Large Font Information

ap_gout1 is filled in with the AES font’s point size.

ap_gout2 is filled in with the font id.

ap_gout3 is a code indicating the type of font:
SYSTEM_FONT (0) is the system font
OUTLINE_FONT (1) is an outline font

ap_gout4 is unused.
AES_SMALLFONT 1 AES Large Font Information

Same as above for the current small font.

appl_getinfo() – 6.49

T H E A T A R I C O M P E N D I U M

AES_SYSTEM 2 AES System Specifics

ap_gout1 is filled in with the resolution number (as would be
returned by Getrez()).

ap_gout2 is filled in with the number of colors supported by
the AES object library.

ap_gout3 is 0 if color icons are not supported or 1 if they
are.

ap_gout4 is 0 to indicate that the extended resource file
format is not supported or 1 if it is.

AES_LANGUAGE 3 AES Globalization

ap_gout1 is filled in with the current AES language code as
follows:

Name ap_gout1 Language
AESLANG_ENGLISH 0 English
AESLANG_GERMAN 1 German
AESLANG_FRENCH 2 French
— 3 (Reserved)
AESLANG_SPANISH 4 Spanish
AESLANG_ITALIAN 5 Italian
AESLANG_SWEDISH 6 Swedish

ap_gout2, ap_gout3, and ap_gout4 are unused.
AES_PROCESS 4 AES Multiple Process Support

ap_gout1 is 0 to indicate the use of non-pre-emptive
multitasking and 1 to indicate the use of pre-emptive
multitasking.

ap_gout2 is 0 if appl_find() cannot convert between MiNT
and AES id’s and 1 to indicate that it can.

ap_gout3 is 0 if appl_search() is not implemented and 1 if
it is.

ap_gout4 is 0 if rsrc_rcfix() is not implemented and 1 if it
is.

AES_PCGEM 5 AES PC-GEM Features

ap_gout1 is 0 if objc_xfind() is not implemented and 1 if it
is.

ap_gout2 is currently reserved.

ap_gout3 is 0 if menu_click() is not implemented and 1 if it
is.

ap_gout4 is 0 if shel_rdef() and shel_wdef() are not
implemented and 1 if they are.

6.50 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES_INQUIRE 6 AES Extended Inquiry Functions

ap_gout1 is 0 if -1 is not a valid ap_id parameter to
appl_read() or 1 if it is.

ap_gout2 is 0 if -1 is not a valid length parameter to
shel_get() or 1 if it is.

ap_gout3 is 0 if -1 is not a valid mode parameter to
menu_bar() or 1 if it is.

ap_gout4 is 0 if MENU_INSTL is not a valid mode
parameter to menu_bar() or 1 if it is.

– 7 Currently reserved.

AES_MOUSE 8 AES Mouse Support

ap_gout1 is 0 to indicate that mode parameters of 258-260
are not supported by graf_mouse() and 1 if they are.

ap_gout2 is 0 to indicate that the application has control
over the mouse form and 1 to indicate that the mouse form
is maintained by the AES on a per-application basis.

ap_gout3 and ap_gout4 are currently unused.
AES_MENU 9 AES Menu Support

ap_gout1 is 0 to indicate that sub-menus are not supported
and 1 if MultiTOS style sub-menus are.

ap_gout2 is 0 to indicate that popup menus are not
supported and 1 if MultiTOS style popup menus are.

ap_gout3 is 0 to indicate that scrollable menus are not
supported and 1 if MultiTOS style scrollable menus are.

ap_gout4 is 0 to indicate that the MN_SELECTED
message does not contain object tree information in
msg[5-7] and 1 to indicate that it does.

appl_getinfo() – 6.51

T H E A T A R I C O M P E N D I U M

AES_SHELL 10 AES Shell Support

ap_gout1 & 0x00FF indicates the highest legal value for the
mode parameter of shel_write() . ap_gout1 & 0xFF00
indicate which extended shel_write() mode bits are
supported.

ap_gout2 is 0 if shel_write() with a mode parameter of 0
launches an application or 1 if it cancels the previous
shel_write() .

ap_gout3 is 0 if shel_write() with a mode parameter of 1
launches an application immediately or 1 if it takes effect
when the current application exits.

ap_gout4 is 0 if ARGV style parameter passing is not
supported or 1 if it is.

AES_WINDOW 11 AES Window Features

ap_gout1 is a bitmap of extended modes supported by
wind_get() and wind_set() (if a bit is set, it is supported)
as follows:

Bit mode
0 WF_TOP returns window below the top also.
1 wind_get(WF_NEWDESK , ...) supported.
2 WF_COLOR get/set.
3 WF_DCOLOR get/set.
4 WF_OWNER get/set.
5 WF_BEVENT get/set.
6 WF_BOTTOM set.
7 WF_ICONIFY set.
8 WF_UNICONIFY set.

9-15 Unused

ap_gout2 is current unused.

ap_gout3 is a bitmap of supported window behaviors (if a
bit is set, it is supported) as follows:

Bit Behaviour
0 Iconifier gadget present.
1 Bottomer gadget present.
2 SHIFT-click sends window to bottom.
3 “hot” close box supported.

4-15 Unused

ap_gout4 is currently unused.

6.52 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES_MESSAGE 12 AES Extended Messages

ap_gout1 is a bitmap of extra messages supported (if a bit
is set, it is supported) as follows:

Bit Message
0 WM_NEWTOP is meaningful.
1 WM_UNTOPPED is sent.
2 WM_ONTOP is sent.
3 AP_TERM is sent.
4 Shutdown and resolution change messages.
5 CH_EXIT is sent.
6 WM_BOTTOM is sent.
7 WM_ICONIFY is sent.
8 WM_UNICONIFY is sent.
9 WM_ALLICONIFY is sent.

10-15 Unused

ap_gout2 is a bitmap of extra messages supported.
Current all bits are unused.

ap_gout3 is a bitmap indicating message behaviour (if a bit
is set, the behaviour exists) as follows:

Bit Message
0 WM_ICONIFY message gives coordinates.

1-15 Unused

ap_gout4 is currently unused.
AES_OBJECT 13 AES Extended Objects

ap_gout1 is 0 if 3D objects are not supported or 1 if they
are.

ap_gout2 is 0 if objc_sysvar() is not present, 1 if
MultiTOS v1.01 objc_sysvar() is present, or 2 if extended
objc_sysvar() is present.

ap_gout3 is 0 if the system font is the only font supported or
1 if GDOS fonts are also supported.

ap_gout4 is reserved for OS extensions.
AES_FORM 14 AES Form Support

ap_gout1 is 0 if ‘flying dialogs’ are not supported or 1 if they
are.

ap_gout2 is 0 if keyboard tables are not supported or 1 if
Mag!X style keyboard tables are supported.

ap_gout3 is 0 if the last cursor position from objc_edit() is
not returned or 1 if it is.

ap_gout4 is currently reserved.

appl_init() – 6.53

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = ap_gtype;

crys_if(0x82);

*ap_gout1 = intout[1];
*ap_gout2 = intout[2];
*ap_gout3 = intout[3];
*ap_gout4 = intout[4];

return intout[0];

RETURN VALUE appl_getinfo() returns 1 if an error occurred or 0 otherwise.

VERSION NOTES Using an ap_gtype value of 4 and above is only supported as of AES version 4.1.

COMMENTS Many of the ap_gtype return values identify features of TOS not supported by
Atari but for the benefit of third-party vendors. You should contact the appropriate
third-party for documentation on these functions.

SEE ALSO appl_init()

appl_init()
WORD appl_init(VOID)

appl_init() should be the first function called in any application that intends to use
GEM calls.

OPCODE 10 (0x0A)

AVAILABILITY All AES versions.

PARAMETERS The function as prototyped accepts no parameters, however, all ‘C’ compilers use
this call to set up internal information as well as to update the applications’ global
array.

BINDING return crys_if(0x0A);

RETURN VALUE appl_init() returns the applications’ global identifier if successful or -1 if the AES
cannot register the application. If successful, the global identifier should be stored
in a global variable for later use.

Besides the return value, the AES fills in the application’s global array (to
reference the global array see your programming languages’ manual).

Name global[x] Meaning

6.54 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

_AESversion 0 AES version number.

_AESnumapps 1 Number of concurrent applications possible (normally 1).
MultiTOS will return -1.

_AESapid 2 Application identifier (same as appl_init() return value).

_AESappglobal 3-4 LONG global available for use by the application.

_AESrscfile 5-6 Pointer to the base of the resource loaded via
rsrc_load() .

— 7-12 Reserved

_AESmaxchar 13 Current maximum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

_AESminchar 14 Current minimum character used by the AES to do
vst_height() prior to writing to the screen. This entry is
only present as of AES version 0x0400.

VERSION NOTES See above.

SEE ALSO appl_exit()

appl_read()
WORD appl_read(ap_id, length, message)
WORD ap_id, length;
VOIDP message;

appl_read() is designed to facilitate inter-process communication between
processes running under the AES. The call will halt the application until a
message of sufficient length is available (see version notes below).

OPCODE 11 (0x0B)

AVAILABILITY All AES versions.

PARAMETERS ap_id is your application identifier as returned by appl_init() . length is the length
(in bytes) of the message to read. message is a pointer to a memory buffer where
the incoming message should be copied to.

BINDING intin[0] = ap_id;
intin[1] = length;

addrin[0] = message;

return crys_if(0x0B);

RETURN VALUE appl_read() returns 0 if an error occurred or non-zero otherwise.

appl_search() – 6.55

T H E A T A R I C O M P E N D I U M

VERSION NOTES If the AES version is 4.0 or higher and appl_getinfo() indicates that this feature is
supported, ap_id takes on an additional meaning. If APR_NOWAIT (-1) is
passed instead of ap_id, appl_read() will return immediately if no message is
currently waiting.

COMMENTS Normally this call is not used. evnt_multi() or evnt_mesag() is used instead for
standard message reception. appl_read() is required for reading messages that are
long and/or of variable length.

It is recommended that message lengths in multiples of 16 bytes be used.

SEE ALSO appl_write()

appl_search()
WORD appl_search(mode, fname, type, ap_id)
WORD mode;
CHAR * fname;
WORD * type,*ap_id;

appl_search() provides a method of identifying all of the currently running
processes.

OPCODE 18 (0x12)

AVAILABILITY Available only in AES versions 4.0 and above when appl_getinfo() indicates its
presence.

PARAMETERS mode specifies the search mode as follows:

Name mode Meaning

APP_FIRST 0 Return the filename of the first process

APP_NEXT 1 Return the filename of subsequent processes

fname should point to a memory location at least 9 bytes long to hold the 8
character process filename found and the NULL byte. type is a pointer to a
WORD into which will be placed the process type as follows:

Name type Meaning

APP_SYSTEM 0x01 System process

APP_APPLICATION 0x02 Application

APP_ACCESSORY 0x04 Accessory

APP_SHELL 0x08

6.56 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

The type parameter is actually a bit mask so it is possible that a process containing
more than one characteristic will appear. The currently running shell process
(usually the desktop) will return a value of APP_APPLICATION | APP_SHELL
(0x0A).

ap_id is a pointer to a word into which will be placed the processes’ application
identifier.

BINDING intin[0] = mode;

addrin[0] = fname;
addrin[1] = type;
addrin[2] = ap_id;

return crys_if(0x12);

RETURN VALUE appl_search() returns 0 if no more applications exist or 1 when more processes
exist that meet the search criteria.

appl_tplay()
WORD appl_tplay(mem, num, scale)
VOIDP mem;
WORD num, scale;

appl_tplay() plays back events originally recorded with appl_trecord().

OPCODE 14 (0x0E)

AVAILABILITY All AES versions.

PARAMETERS mem is a pointer to an array of EVNTREC structures (see appl_trecord()). num
indicates the number of EVNTREC ’s to play back.

scale indicates on a scale of 1 to 10000 how fast the AES will attempt to play
back your recording. A value of 100 will play it back at recorded speed. A value
of 200 will play the events back at twice the recorded speed, and 50 will play
back the events at half of the recorded speed. Other values will respond
accordingly.

BINDING intin[0] = num;
intin[1] = scale;

addrin[0] = mem;

return crys_if(0x0E);

appl_trecord() – 6.57

T H E A T A R I C O M P E N D I U M

RETURN VALUE appl_tplay() always returns 1 meaning no error occurred.

CAVEATS This function does not work correctly on AES versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_trecord()

appl_trecord()
WORD appl_trecord(mem, num)
VOIDP mem;
WORD num;

appl_trecord() records AES events for later playback.

OPCODE 15 (0x0F)

AVAILABILITY All AES versions.

PARAMETERS mem points to an array of num EVNTREC structures into which the AES will
record events as indicated here:

typedef struct pEvntrec
{

WORD ap_event;
LONG ap_value;

} EVNTREC;

ap_event defines the required interpretation of ap_value as follows:

Name ap_event Event ap_value

APPEVNT_TIMER 0 Timer Elapsed Time (in milliseconds)

APPEVNT_BUTTON 1 Button low word = state (1 = down)
high word = # of clicks

APPEVNT_MOUSE 2 Mouse low word = X pos
high word = Y pos

APPEVNT_KEYBOARD 3 Keyboard bits 0-7: ASCII code
bits 8-15: scan code
bits 16-31: shift key state

BINDING intin[0] = num;

addrin[0] = mem;

return crys_if(0x0F);

6.58 – Application Services Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE appl_trecord() returns the number of events actually recorded.

CAVEATS This function does not work correctly on AES versions less than 1.40 without a
patch program available from Atari Corp.

SEE ALSO appl_tplay()

appl_write()
WORD appl_write(ap_id, length, msg)
WORD ap_id, length;
VOIDP msg;

appl_write() can be used to send a message to a valid message pipe.

OPCODE 12 (0x0C)

AVAILABILITY All AES versions.

PARAMETERS ap_id is the application identifier of the process to which you wish to send the
message. length specifies the number of bytes present in the message. msg is a
pointer to a memory buffer with at least length bytes available.

BINDING intin[0] = ap_id;
intin[1] = length;

addrin[0] = msg;

return crys_if(0x0C);

RETURN VALUE appl_write() returns 0 if an error occurred or greater than 0 if the message was
sent successfully.

VERSION NOTES As of AES version 1.40, desk accessories may send MN_SELECTED messages
to the desktop to trigger desktop functions.

As of AES version 4.00 you can use shel_write(7,...) to ‘broadcast’ a message to
all processes running with the exception of the AES itself, the desktop, and your
own application. See shel_write() for details.

COMMENTS It is recommended that you always send messages in 16 byte blocks using a
WORD array of 8 elements as the AES does.

SEE ALSO appl_read(), shel_write()

T H E A T A R I C O M P E N D I U M

Event Library

The Event Library consists of a group of system calls which are used to monitor system messages
including mouse clicks, keyboard usage, menu bar interaction, timer calls, and mouse tracking. The
library consists of the following calls:

•• evnt_button()
•• evnt_dclick()
•• evnt_keybd()
•• evnt_mesag()
•• evnt_mouse()
•• evnt_multi()
•• evnt_timer()
•• evnt_button()

evnt_button() – 6.61

T H E A T A R I C O M P E N D I U M

evnt_button()
WORD evnt_button(clicks, mask, state, mx, my, button, kstate)
WORD clicks, mask, state;
WORD *mx, *my, *button, *kstate;

evnt_button() releases control to the operating system until the specified mouse
button event has occurred.

OPCODE 21 (0x15)

AVAILABILITY All AES versions.

PARAMETERS clicks specifies the number of mouse-clicks that must occur before returning.
mask specifies the mouse buttons to wait for as follows:

Name mask Meaning

LEFT_BUTTON 0x01 Left mouse button

RIGHT_BUTTON 0x02 Right mouse button

MIDDLE_BUTTON 0x04 Middle button (this button would be the first
button to the left of the rightmost button on the
device).

— 0x08
.
.

Other buttons (0x08 is the mask for the button to
the immediate left of the middle button. Masks
continue leftwards).

state specifies the button state that must occur before returning as follows:

mask Meaning

0x00 All buttons released

0x01 Left button depressed

0x02 Right button depressed

0x04 MIddle button depressed

0x08
.
.

etc...

mx is a pointer to a WORD which upon return will contain the x-position of the
mouse pointer at the time of the event. my is a pointer to a WORD which upon
return will contain the y-position of the mouse pointer at the time of the event.

button is a pointer to a WORD which upon return will contain the mouse button
state as defined in state.

kstate is a pointer to a WORD which upon return will contain the current status

6.62 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

of the keyboard shift keys. The value is a bit-mask defined as follows:

Name Mask Key

K_RSHIFT 0x01 Right Shift

K_LSHIFT 0x02 Left Shift

K_CTRL 0x04 Control

K_ALT 0x08 Alternate

BINDING intin[0] = clicks;
intin[1] = mask;
intin[2] = state;

crys_if(0x15);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE Upon exit, evnt_button() returns a WORD indicating the number of times the
mouse button state matched state.

COMMENTS A previously undocumented feature of this call is accessed by logically OR’ing
the mask parameter with 0x100. This causes the call to return when independent
buttons are depressed. For example, a mask value of 0x03 will return when both
the left and right mouse buttons are depressed. A mask value of 0x103 will cause
the call to return when either button is depressed.

SEE ALSO evnt_multi()

evnt_dclick()
WORD evnt_dclick(new, flag)
WORD new, flag;

evnt_dclick() sets the mouse double-click response rate. This call is global, and
thus, affects all applications.

OPCODE 26 (0x1A)

AVAILABILITY All AES versions.

PARAMETERS If flag is EDC_INQUIRE (0), new is ignored and the current double-click rate is
returned. If flag is EDC_SET (1), new specifies the new double-click rate as

evnt_keybd() - 6.63

T H E A T A R I C O M P E N D I U M

follows:

flag Response

0
1
2
3
4

Slowest

Fastest

BINDING intin[0] = new;
intin[1] = flag;

return crys_if(0x1A);

RETURN VALUE evnt_dclick() returns the newly set or current double-click rate based on flag.

COMMENTS Because this setting is global for all applications, Atari has strongly recommended
that developers use this call only where appropriate (such as in a configuration
CPX like the General Setup CPX included with XCONTROL).

evnt_keybd()
WORD evnt_keybd(VOID)

evnt_keybd() relinquishes program control to the operating system until a valid
keypress is available in the applications’ message pipe.

OPCODE 20 (0x14)

AVAILABILITY All AES versions.

PARAMETERS None

BINDING return crys_if(0x14);

RETURN VALUE evnt_keybd() returns a 16-bit value containing the ASCII code of the key entered
in the lower eight bits and the scan code in the upper 8-bits.

VERSION NOTES TOS versions released at or above 2.06 and 3.06 disabled reception of keys 1
through 9 on the numeric keypad when used in conjunction with the alternate key.
Users may now enter the full range of ASCII values by holding down ALT, typing
in the decimal ASCII code, and then releasing the ALT key. These keys, therefore,
should not be used by applications. The standard numeric keypad is still available.

SEE ALSO evnt_multi()

6.64 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

evnt_mesag()
WORD evnt_mesag(msg)
WORD *msg;

evnt_mesag() releases control to the operating system until a valid system
message is available in the applications’ message pipe.

OPCODE 23 (0x17)

AVAILABILITY All AES versions.

PARAMETERS msg is a pointer to an array of 8 WORD’ s to be used as a message buffer.

BINDING addrin[0] = msg

return crys_if(0x17);

RETURN VALUE The return value is currently reserved by Atari and currently is defined as 1. The
array msg is filed in with the following values:

evnt_mesag() - 6.65

T H E A T A R I C O M P E N D I U M

Index Description Possible Values #

msg[0] Message Type MN_SELECTED

WM_REDRAW

WM_TOPPED

WM_CLOSED

WM_FULLED

WM_ARROWED

WM_HSLID

WM_VSLID

WM_SIZED

WM_MOVED

WM_UNTOPPED

WM_ONTOP

WM_BOTTOM

WM_ICONIFY

WM_UNICONIFY

WM_ALLICONIFY

WM_TOOLBAR

AC_OPEN

AC_CLOSE

AP_TERM

AP_TFAIL

AP_RESCHG

SHUT_COMPLETED

RESCH_COMPLETED

AP_DRAGDROP

SH_WDRAW

CH_EXIT

10

20

21

22

23

24

25

26

27

28

30

31

33

34

35

36

37

40

41

50

51

57

60

61

63

72

90
msg[1] The application identifier of the

sending application.
Any valid ap_id.

msg[2] The length of the message beyond
16 bytes (use appl_read() to read
the excess).

Currently all system messages return 0
in this slot. Only user-defined
messages utilize a higher value.

6.66 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Each system message can be interpreted as follows:

Message Extended Information

MN_SELECTED A menu item has been selected by the user. msg[3] contains the
object number of the menu title and msg[4] contains the object
number of the menu item.

As of AES version 4.0 (and when indicated by appl_getinfo()),
msg[5] and msg[6] contain the high and low word, respectively, of
the object tree of the menu item. msg[7] contains the parent object
index of the menu item.

WM_REDRAW This message alerts an application that a portion of the screen
needs to be redrawn. msg[3] contains the handle of the window to
redraw. msg[4-7] are the x, y, w, and h respectively of the ‘dirtied’
area.

When the message is received the window contents should be
drawn (or a representative icon if the window is iconified).

WM_TOPPED This message is sent when an application window which is currently
not the top window is clicked on by the user. msg[3] contains the
handle of the window.

You should use wind_set(handle, WF_TOP, msg[3], 0, 0, 0) to
actually cause the window to be topped.

WM_CLOSED This message is sent when the user clicks on a windows’ close
box. msg[3] contains the handle of the window to close.

You should react to this message with wind_close() .
WM_FULLED This message is sent when the user clicks on a windows’ full box. If

the window is not at full size, the window should be resized using
wind_set(handle, WF_CURRXYWH,... to occupy the entire screen
minus the menu bar (see wind_get()).

If the window was previously ‘fulled’ and has not been resized since,
the application should return the window to its previous size.

evnt_mesag() - 6.67

T H E A T A R I C O M P E N D I U M

WM_ARROWED This message is sent to inform an application that one of its slider
gadgets has been clicked on.

A row or column message is sent when a slider arrow is selected.
A ‘page’ message is sent when a darkened area of the scroll bar is
clicked. This usually indicates that the application should adjust the
window’s contents by a larger amount than with the row or column
messages.

msg[3] indicates which action was actually selected as follows:

Name Value Meaning
WA_UPPAGE 0 Page Up
WA_DNPAGE 1 Page Down
WA_UPLINE 2 Row Up
WA_DNLINE 3 Row Down
WA_LFPAGE 4 Page Left
WA_RTPAGE 5 Page Right
WA_LFLINE 6 Column Left
WA_RTLINE 7 Column Right

WM_HSLID This message indicates that the horizontal slider has been moved.
msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.
WM_VSLID This message indicates that the vertical slider has been moved.

msg[3] contains the new slider position ranging from 0 to 1000.

Note: Slider position is relative and not related to slider size.
WM_SIZED This message occurs when the user drags the window sizing

gadget. msg[3] contains the window handle. msg[4-7] indicate the
x, y, w, and h respectively of the new window location.

Use wind_set(handle, WF_CURRXYWH,... to actually size the
window.

WM_SIZED and WM_MOVED usually share common handling
code.

WM_MOVED This message occurs when the user moves the window by dragging
the windows’ title bar. msg[3] contains the handle of the window
being moved. msg[4-7] indicate the x, y, w, and h respectively of the
new window location.

Use wind_set(handle, WF_CURRXYWH,...) to actually move the
window.

WM_MOVED and WM_SIZED usually share common handling
code.

WM_UNTOPPED This message is sent when the current window is sent behind one
or more windows as the result of another window being topped.
msg[3] contains the handle of the window being untopped.

The application need take no action. The message is for
informational use only.

6.68 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WM_ONTOP This message is sent when an applications’ window is brought to
the front on a multitasking AES. msg[3] is the handle of the window
being brought to the front.

This message requires no action, it is for informational purposes
only.

WM_BOTTOM This message is sent when the user shift-clicks on the window’s
(specified in msg[3]) mover bar to indicate that the window should
be sent to the bottom of the window stack by using wind_set() with
a parameter of WF_BOTTOM.

WM_ICONIFY This message is sent when the user clicks on the SMALLER
window gadget. msg[3] indicates the handle of the window to be
iconified. msg[4-7] indicate the x, y, w, and h of the iconified
window.

If the iconified window represents a single window this message
should be responded to by using wind_set() with a parameter of
WF_ICONIFY.

WM_UNICONIFY This message is sent when the user double-clicks on an iconified
window. msg[3] indicates the handle of the window to be iconified.
msg[4-7] indicate the x, y, w, and h of the original window.

This message should be responded to by using wind_set() with a
parameter of WF_UNICONIFY.

WM_ALLICONIFY This message is sent when the user CTRL-clicks on the SMALLER
window gadget. msg[3] indicates which window’s gadget was
clicked. msg[4-7] indicates the position at which the new iconified
window should be placed.

The application should respond to this message by closing all open
windows and opening a new iconified window at the position
indicated which represents the application.

WM_TOOLBAR This message is sent when a toolbar object is clicked. msg[3]
contains the handle of the window containing the toolbar.

msg[4] contains the object index of the object clicked. msg[5]
contains the number of clicks. msg[6] contains the state of the
keyboard shift keys at the time of the click (as in evnt_keybd()).

AC_OPEN This message is sent when the user has selected a desk accessory
to open. msg[4] contains the application identifier (as returned by
appl_init()) of the accessory to open.

AC_CLOSE This message is sent to a desk accessory when the accessory
should be closed. msg[3] is the application identifier (as returned
by appl_init()) of the accessory to close.

Do not close any windows your accessory had open, the system will
do this for you. Also, do not require any feedback from the user
when this is received. Treat this message as a ‘Cancel’ from the
user.

evnt_mesag() - 6.69

T H E A T A R I C O M P E N D I U M

AP_TERM This message is sent when the system requests that the application
terminate. This is usually the result of a resolution change but may
also occur if another application sends this message to gain total
control of the system.

The application should shut down immediately after closing
windows, freeing resources, etc... msg[5] indicates the reason for
the shut down as follows:

AP_TERM (50) = Just shut down.
AP_RESCHG (57) = Resolution Change.

If for some reason, your process can not shut down you must inform
the AES by sending an AP_TFAIL (51) message by using
shel_write() mode 10 (see shel_write()).

Note: Desk Accessories wil always be sent AC_CLOSE
messages, not AP_TERM.

AP_TFAIL This message should be sent to the system (see shel_write())
when an application has received an AP_TERM (50) message and
cannot shut down.

msg[0] should contain AP_TFAIL and msg[1] should contain the
application error code.

AP_RESCHG This message is actually a sub-command and is only found as a
possible value in the AP_TERM (50) message (see above).

SHUT_COMPLETED This message is sent to the application which requested a
shutdown when the shutdown is complete and was successful.

RESCH_COMPLETE
D

This message is sent to an application when a resolution change it
requested is completed. msg[3] contains 1 if the resolution change
was successful and 0 if an error occurred.

AP_DRAGDROP This message indicates that another application wishes to initiate a
drap and drop session. msg[3] indicates the handle of the window
which had an object dropped on it or -1 if no specific window was
targeted.

msg[4-5] contains the X and Y position of the mouse when the
object was ‘dropped’. msg[6] indicates the keyboard shift state at
the time of the drop (as in evnt_keybd()).

msg[7] is a two-byte ASCII packed pipe identifier which gives the
file extension of the pipe to open.

For more information about the drag & drop protocal, see Chapter
2: GEMDOS.

SH_WDRAW This message is sent to the Desktop to ask it to update an open
drive window. msg[3] should contain the drive number to update (0
= A:, 1 = B:) or -1 to update all windows.

CH_EXIT This message is sent when a child process that the application has
started, returns. msg[3] contains the child’s application identifier
and msg[4] contains its exit code.

VERSION NOTES WM_UNTOPPED, WM_ONTOP , AP_TERM , AP_TFAIL , AP_RESCHG,
SHUT_COMPLETED , RESCH_COMPLETED , and CH_EXIT are new as of

6.70 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AES version 4.0.

WM_BOTTOM , WM_ICONIFY , WM_UNICONIFY , WM_ALLICONIFY ,
and WM_TOOLBAR are new as of AES version 4.1.

No lower version AES will send these messages.

The existence (or acceptance) of these messages should also be checked for by
using appl_getinfo().

SEE ALSO evnt_multi()

evnt_mouse()
WORD evnt_mouse(flag, x, y, w, h, mx, my, button, kstate)
WORD flag, x, y, w, h;
WORD *mx, *mx, *button, *kstate;

evnt_mouse() releases control to the operating system until the mouse enters or
leaves a specified area of the screen .

OPCODE 22 (0x16)

AVAILABILITY All AES versions.

PARAMETERS flag specifies the event to wait for as follows:

Name Value Meaning

MO_ENTER 0 Wait for mouse to enter rectangle.

MO_LEAVE 1 Wait for mouse to leave rectangle.

The rectangle to watch is specified in x, y, w, h. mx and my are WORD pointers
which will be filled in with the final position of the mouse.

button is a WORD pointer which will be filled in upon return with the final state
of the mouse button as defined in evnt_button().

kstate is a WORD pointer which will be filled in upon return with the final state
of the keyboard shift keys as defined in evnt_button().

BINDING intin[0] = flag;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

evnt_multi() - 6.71

T H E A T A R I C O M P E N D I U M

crys_if(0x16);

*mx = intout[1];
*my = intout[2];
*button = intout[3];
*kstate = intout[4];

return intout[0];

RETURN VALUE The return value of this function is reserved. Currently it always returns 1.

COMMENTS The evnt_multi() function can be used to watch two mouse/rectangle events as
opposed to one.

SEE ALSO evnt_multi()

evnt_multi()
WORD evnt_multi(events, bclicks, bmask, bstate, m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y,

m2w, m2h, msg, locount, hicount, mx, my, ks, kc, mc)
WORD events, bclicks, bmask, bstate, m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y, m2w, m2h;
WORD *msg;
WORD locount, hicount;
WORD *mx, *my, *ks, *kc, *mc;

evnt_multi() suspends the application until a valid message that the application is
interested in occurs. This call combines the functionality of evnt_button(),
evnt_keybd(), evnt_mesag(), evnt_mouse(), and evnt_timer() into one call.

This call is usually the cornerstone of all GEM applications that must process
system events.

OPCODE 25 (0x19)

AVAILABILITY All AES versions.

PARAMETERS events is a bit mask which tells the function which events your application is
interested in. You should logically ‘OR’ any of the following values together:

Name Mask Function

MU_KEYBD 0x01 Wait for a user keypress.

MU_BUTTON 0x02 Wait for the specified mouse button state.

MU_M1 0x04 Wait for a mouse/rectangle event as specified.

MU_M2 0x08 Wait for a mouse/rectangle event as specified.

6.72 – Event Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

MU_MESAG 0x10 Wait for a message.

MU_TIMER 0x20 Wait the specified amount of time.

For usage of bclicks, bmask, bstate, mx, my, kc, and ks, you should consult
evnt_button().

For usage of m1flag, m1x, m1y, m1w, m1h, m2flag, m2x, m2y, m2w, and m2h,
consult evnt_mouse().

For usage of msg, see evnt_mesag().

For usage of locount and hicount, see evnt_timer().

BINDING intin[0] = events;
intin[1] = bclicks;
intin[2] = bmask;
intin[3] = bstate;
intin[4] = m1flag;
intin[5] = m1x;
intin[6] = m1y;
intin[7] = m1w;
intin[8] = m1h;
intin[9] = m2flag;
intin[10] = m2x;
intin[11] = m2y;
intin[12] = m2w;
intin[13] = m2h;
intin[14] = locount;
intin[15] = hicount;

addrin[0] = msg;

crys_if(0x19);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];
*kc = intout[5];
*mc = intout[6];

return intout[0];

RETURN VALUE The function returns a bit mask of which events actually happened as in events.
This may be one or more events and your application should be prepared to handle
each.

VERSION NOTES The only facet of evnt_multi() which has changed from AES version 4.0 is that
which relates to evnt_mesag(). For further information you should consult that
section.

CAVEATS Under TOS 1.0, calling this function from a desk accessory with the MU_TIMER

evnt_timer() - 6.73

T H E A T A R I C O M P E N D I U M

mask and locount and hicount being equal to 0 could hang the system.

SEE ALSO evnt_button(), evnt_keybd(), evnt_mesag(), evnt_mouse(), evnt_timer()

evnt_timer()
WORD evnt_timer(locount, hicount)
WORD locount, hicount;

evnt_timer() releases control to the operating system until a specified amount of
time has passed.

OPCODE 24 (0x18)

AVAILABILITY All AES versions.

PARAMETERS locount is the low word of a 32-bit time value specified in milliseconds.
hicount is the high portion of that 32-bit value.

BINDING intin[0] = locount;
intin[1] = hicount;

return crys_if(0x18);

RETURN VALUE The return value is reserved and is currently always 1.

CAVEATS Under TOS 1.0, calling this function from a desk accessory with a both parameters
having a value of 0 will hang the system.

COMMENTS This function should not be relyed on as an accurate clock. The time specified is
used as a minimum time value only and the function will return at some point after
that duration has passed.

SEE ALSO evnt_multi()

T H E A T A R I C O M P E N D I U M

Form Library

The Form Library contains utility functions for the use and control of dialog boxes, alert boxes, and user
input. The members of the Form Library are:

•• form_alert()
•• form_button()
•• form_center()
•• form_dial()
•• form_do()
•• form_error()
•• form_keybd()

form_alert() – 6.77

T H E A T A R I C O M P E N D I U M

form_alert()
WORD form_alert(default, alertstr)
WORD default;
CHAR * alertstr;

form_alert() displays a standardized alert box and returns the user’s selection.

OPCODE 52 (0x34)

AVAILABILITY All AES versions.

PARAMETERS default contains the number of the exit button which is to be made default (1-3).
alertstr contains a formatted string as follows: “[#][Alert Text][Buttons]”.

specifies the icon to display in the alert as follows:

Icon Displayed

0 No Icon

1

2

3

4

5

‘Alert Text’ is a text string of as many as 5 lines composed of up to 30 characters
each. Each line is separated by a ‘|’ character.

‘Buttons’ is a text string to define as many as 3 buttons up to 10 characters each. If
only one button is used, its text may be as long as 30 characters. Again, each button
is separated by a ‘|’ character

6.78 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = default;

addrin[0] = alertstr;

return crys_if(0x34);

RETURN VALUE form_alert() returns a WORD indicating which button was used to exit by the
user (A possible value of 1-3).

VERSION NOTES Icons #4-5 are only available as of AES version 4.1.

CAVEATS Several versions of the AES have special quirks related to this function. By
following the quidelines below you should avoid any difficulty:

1. All AES versions below 1.06 have some difficulty formatting alert strings
padded with spaces. If you want your alerts to look right on all AES
versions, do not pad any button or line with spaces with the exception below.

2. Add one space to the end of the longest text line on an alert. This will
prevent the right edge from touching the border in some AES versions.

form_button()
WORD form_button(tree, obj, clicks, newobj)
OBJECT * tree;
WORD obj, clicks, newobj;

form_button() is a utility function designed to aid in the creation of a custom
form_do() handler.

OPCODE 56 (0x38)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to a valid object tree in memory you wish to process button events
for. obj is the object index into tree which was clicked on and which needs to be
processed.

clicks is the number of times the mouse button was clicked.

newobj returns the next object to gain edit focus or 0 if there are no editable
objects. If the top bit of newobj is set, this indicates that a TOUCHEXIT object
was double-clicked.

BINDING intin[0] = obj;
intin[1] = clicks;

form_center() - 6.79

T H E A T A R I C O M P E N D I U M

addrin[0] = tree;

crys_if(0x38);

*newobj = intout[1];

return intout[0];

RETURN VALUE form_button() returns a 0 if it exits finding an EXIT or TOUCHEXIT object
selected or 1 otherwise.

COMMENTS To use this function properly, the application should take the following steps:

1. Monitor mouse clicks with evnt_multi() or evnt_button().

2. When a click occurs, use objc_find() to determine if the click occurred
over the object.

3. If so, call form_button() with the appropriate values.

This function was not originally documented by Atari. You may have to add
bindings for this function to some earlier ‘C’ compilers.

SEE ALSO form_do(), form_keybd()

form_center()
WORD form_center(tree, x, y, w, h)
OBJECT * tree;
WORD *x, *y, *w, *h;

form_center() is used to modify an object’s coordinates so that it will appear in
the center of the display screen.

OPCODE 54 (0x36)

AVAILABILITY All AES versions.

PARAMETERS tree points to a valid OBJECT structure (see discussion of resources) which the
application wishes to have centered. x, y, w, and h, return a clipping rectangle
suitable for use in objc_draw().

BINDING addrin[0] = tree;

crys_if(0x36);

6.80 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];

RETURN VALUE The return value is currently reserved. Currently it equals 1.

COMMENTS The values that form_center() returns in x, y, w, and h, are not necessarily the
same as the object’s. These values take into account negative borders, outlining,
and shadowing. This is meant to provide a suitable clipping rectangle for
objc_draw()

SEE ALSO objc_draw()

form_dial()
WORD form_dial(mode, x1, y1, w1, h1, x2, y2, w2, h2)
WORD mode, x1, y1, w1, h1, x2, y2, w2, h2;

form_dial() is used to reserve and release screen space for dialog usage. In
addition, it also optionally provides grow/shrink box effects.

OPCODE 51 (0x33)

AVAILABILITY All AES versions.

PARAMETERS mode specifies the action to take and the meaning of remaining parameters as
follows:

Name # Action

FMD_START 0 This mode reserves the screen space for a dialog. x2, y2, w2, and
h2, contain the coordinates of the dialog to be used (usually
obtained through form_center()).

FMD_GROW 1 This mode draws an expanding box from the coordinates specified
in x1, y1, w1, and h1 to the coordinates specified in x2, y2, w2, and
h2. This call is optional and is not required to display a dialog.

FMD_SHRINK 2 This mode draws a shrinking box from the coordinates specified in
x2, y2, w2, and h2 to the coordinates specified in x1, y1, w1, and
h1. This call is optional and is not required to display a dialog.

FMD_FINISH 3 This mode releases the screen space for a dialog (previously
reserved with mode 0). x2, y2, w2, and h2 contain the coordinates
of the space to release. One of the side-effects of this call is a
WM_REDRAW message sent to any window which the dialog was
covering.

form_do() - 6.81

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = mode;
intin[1] = x1;
intin[2] = y1;
intin[3] = w1;
intin[4] = h1;
intin[5] = x2;
intin[6] = y2;
intin[7] = w2;
intin[8] = h2;

return crys_if(0x33);

RETURN VALUE The function returns 0 is an error occurred or non-zero otherwise.

VERSION NOTES The AES does not currently make use of mode FMD_START . The call should,
however, still be executed for upward compatibility.

SEE ALSO graf_growbox(), graf_shrinkbox()

form_do()
WORD form_do(tree, editobj)
OBJECT * tree;
WORD editobj;

form_do() provides an automated dialog handling function to the calling
application. It suspends program control, handling all radio buttons, selectable
objects, etc... until an object with the TOUCHEXIT or EXIT flag is selected.

OPCODE 50 (0x32)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to a valid object tree (see the discussion on objects in this
chapter) which contains a dialog with at least one EXIT or TOUCHEXIT button
or object.

editobj is the object index into tree which specifies the desired initial location of
the edit cursor (the object must be flagged as EDITABLE). If the form has no text
editable fields, you should use 0.

BINDING intin[0] = editobj;

addrin[0] = tree;

return crys_if(0x32);

RETURN VALUE form_do() returns the object index of the EXIT or TOUCHEXIT button which

6.82 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

was selected. If the object was double clicked, bit 15 will be set. This means that
to obtain the actual object number you should mask off the result with 0x7FFF.

form_error()
WORD form_error(error)
WORD error;

form_error() displays a pre-defined error alert box to the user.

OPCODE 53 (0x35)

AVAILABILITY All AES versions.

PARAMETERS error specifies a MS-DOS error code as follows:

Name
GEMDOS

Error # error Message
FERR_FILENOTFOUND -33 2 File Not Found

The application can not find the folder or
file that you tried to access.

FERR_PATHNOTFOUND -34 3 Path Not Found

The application cannot find the folder or
file that you tried to access.

FERR_NOHANDLES -35 4 No More File Handles

The application does not have room to
open another document. To make
room, close any open document that
you do not need.

FERR_ACCESSDENIED -36 5 Access Denied

An item with this name already exists in
the directory, or this item is set to read-
only status.

FERR_LOWMEM -39 8 Insufficient Memory

There is not enough memory for the
application you just tried to run.

FERR_BADENVIRON -41 10 Invalid Environment

There is not enough memory for the
application you just tried to run.

FERR_BADFORMAT -42 11 Invalid Format

There is not enough memory for the
application you just tried to run.

form_keybd() - 6.83

T H E A T A R I C O M P E N D I U M

FERR_BADDRIVE -46 15 Invalid Drive Specification

The drive you specified does not exist.
FERR_DELETEDIR -47 16 Attempt To Delete Working

Directory

You cannot delete the folder in which
you are working.

FERR_NOFILES -49 18 No More Files

The application can not find the folder or
file that you tried to access.

The GEMDOS error number can be translated into a MS-DOS code by
subtracting 31 from the absolute value of the error code.

BINDING intin[0] = error;

return crys_if(0x35);

RETURN VALUE The function returns the exit button clicked as in form_alert() . It is, however,
insignifigant as all of the error alerts have only one button.

CAVEATS Not every GEMDOS error code has a matching alert box.

SEE ALSO form_alert()

form_keybd()
WORD form_keybd(tree, obj, nextobj, kc, newobj, keyout)
OBJECT * tree;
WORD obj, nextobj, kc;
WORD *newobj, *keyout;

form_keybd() processes keyboard input for dialog box control. It handles special
keys such as return, escape, tab, etc... It is only of real use if you are writing a
customized form_do() routine.

OPCODE 55 (0x37)

AVAILABILITY All AES versions.

PARAMETERS tree points to a valid OBJECT tree containing the dialog you wish to process. obj
is the object index of the object which currently has edit focus (0 if none). nextobj
is reserved and should be 1.

6.84 – Form Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

kc is the value returned from evnt_keybd() or evnt_multi() which represents the
keypresses’ scan code and ASCII value.

newobj is a WORD pointer which is filled in on function exit to be the new object
with edit focus unless the RETURN key was pressed with a default object present in
which case it equals the object index of the object that was the default.

keyout is the value ready to be passed on to objc_edit() if no processing was
required or 0 if the key was processed and handled by the call.

BINDING intin[0] = obj;
intin[1] = nextobj;
intin[2] = kc;

addrin[0] = tree;

crys_if(0x37);

*newobj = intout[1];
*keyout = intout[2];

return intout[0];

RETURN VALUE form_keybd() returns 0 if a default EXIT object was triggered by this call or 1 if
the dialog should continue to be processed.

COMMENTS This function was not originally documented by Atari. You may need to add
bindings for this function into some older ‘C’ compilers.

SEE ALSO objc_edit(), form_do(), form_button()

T H E A T A R I C O M P E N D I U M

File Selector Library

The File Selector Library contains two functions for displaying the system file selector (or currently
installed alternate file selector) and prompting the user to select a file. The members of this library are:

•• fsel_exinput()
•• fsel_input()

fsel_exinput() – 6.87

T H E A T A R I C O M P E N D I U M

fsel_exinput()
WORD fsel_exinput(path, file, button, title)
CHAR * path, *file;
WORD *button;
CHAR * title;

fsel_exinput() displays the system file selector and offers the user an opportunity
to choose a complete GEMDOS path specification.

OPCODE 91 (0x5B)

AVAILABILITY Available from AES version 1.40.

PARAMETERS path should be a pointer to a character buffer at least 128 bytes long (applications
wishing to access CD-ROM’s should allocate at least 200 bytes). On input the
buffer should contain a complete GEMDOS path specification including a drive
specifier, path string, and wildcard mask as follows: ‘drive:\path\mask’. The mask
can be any valid GEMDOS wildcard (usually *.*).

On function exit, path contains final path of the selected file (you will have to strip
the mask).

file should point to a character buffer 13 bytes long (12 character filename plus
NULL). On input its contents will be placed on the filename line of the selector
(usually this value can simply be a empty string). On function exit, file contains the
filename which the user selected.

button is a short pointer which upon function exit will contain
FSEL_CANCEL (0) if the user selected CANCEL or FSEL_OK (1) if OK.

title should be a pointer to a character string up to 30 characters long which
contains the title to appear in the file selector (usually indicates which action the
user is about to take).

BINDING addrin[0] = path;
addrin[1] = file;
addrin[2] = label;

crys_if(0x5B);

*button = intout[1];

return intout[0];

RETURN VALUE fsel_exinput() returns 0 if an error occured and 1 otherwise.

6.88 – File Selector Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

VERSION NOTES Some ‘C’ compilers (Lattice for example) provide a special function which
allows fsel_exinput() to be used even on earlier AES versions.

COMMENTS The path parameter to this function should be validated to ensure that the path
actually exists prior to calling this function to prevent confusing the user.

This call should always be used as opposed to fsel_input() when it is available.
Otherwise, the user has no reminder as to what function s/he is actually
undertaking.

SEE ALSO fsel_input()

fsel_input()
WORD fsel_input(path, file, button)
CHAR * path, *file;
WORD *button;

fsel_input() displays the system file selector and allows the user to select a valid
GEMDOS path and file.

OPCODE 90 (0x5A)

AVAILABILITY All AES versions.

PARAMETERS All parameters are consistent with fsel_exinput() with the notable lack of title.

BINDING addrin[0] = path;
addrin[1] = file;

crys_if(0x5A);

*button = intout[1];

return intout[0];

RETURN VALUE fsel_input() returns a 0 if an error occurred or 1 otherwise.

COMMENTS You should never use this function in place of fsel_exinput() when fsel_exinput()
is available.

SEE ALSO fsel_exinput()

T H E A T A R I C O M P E N D I U M

Graphics Library

The Graphics Library provides applications with a variety of utility functions which serve to provide
common screen effects, mouse control, and the obtaining of basic screen attributes. The functions of the
Graphics Library are as follows:

•• graf_dragbox()
•• graf_growbox()
•• graf_handle()
•• graf_mkstate()
•• graf_mouse()
•• graf_movebox()
•• graf_rubberbox()
•• graf_shrinkbox()
•• graf_slidebox()
•• graf_watchbox()

graf_dragbox() – 6.91

T H E A T A R I C O M P E N D I U M

graf_dragbox()
WORD graf_dragbox(w, h, sx, sy, bx, by, bw, bh, endx, endy)
WORD w, h, sx, sy, bx, by, bw, bh;
WORD *endx, *endy;

graf_dragbox() allows the user to move a box frame within the constraints of a
bounding rectangle. This call is most often used to give the user a visual ‘clue’
when an object is being moved on screen.

OPCODE 71 (0x47)

AVAILABILITY All AES versions.

PARAMETERS w and h specify the initial width and height of the box to draw. sx and sy specify
the starting x and y screen coordinates.

bx, by, bw, and bh, give the coordinates of the bounding rectangle.

endx and endy are WORD pointers which, on function exit, will be filled in with
the ending x and y position of the box.

BINDING intin[0] = w;
intin[1] = h;
intin[2] = sx;
intin[3] = sy;
intin[4] = bx;
intin[5] = by;
intin[6] = bw;
intin[7] = bh;

crys_if(0x47);

*endx = intout[1];
*endy = intout[2];

return intout[0];

RETURN VALUE graf_dragbox() returns a 0 if an error occurred during execution or greater than
zero otherwise.

COMMENTS This call should be made only when the mouse button is depressed. The call
returns when the mouse button is released.

SEE ALSO graf_slidebox()

6.92 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

graf_growbox()
WORD graf_growbox(x1, y1, w1, h1, x2, y2, w2, h2)
WORD x1, y1, w2, h2, x2, y2, w2, h2;

graf_growbox() is used to provide a visual ‘clue’ to a user by animating an
outline of a box from one set of coordinates to another. It is the complement
function to graf_shrinkbox().

OPCODE 73 (0x49)

AVAILABILITY All AES versions.

PARAMETERS x1, y1, w1, and h1 are the screen coordinates of the starting rectangle (where the
outline will grow from).

x2, y2, w2, and h2 are the screen coordinates of the ending rectangle (where the
outline will grow to).

BINDING intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x49);

RETURN VALUE graf_growbox() returns 0 if an error occured or non-zero otherwise.

CAVEATS There is currently no defined method of handling an error generated by this
function.

COMMENTS This function is what is called by GEM ’s form_dial(FMD_GROW ,...

SEE ALSO form_dial(), graf_shrinkbox()

graf_handle()
WORD graf_handle(wcell, hcell, wbox, hbox);
WORD *wcell, *hcell, *wbox, *hbox;

graf_handle() returns important information regarding the physical workstation

graf_mkstate() - 6.93

T H E A T A R I C O M P E N D I U M

currently in use by the AES.

OPCODE 77 (0x4D)

AVAILABILITY All AES versions.

PARAMETERS wcell and hcell are WORD pointers which on function exit will be filled in with
the width and height, respectively, of the current system character set.

wbox and hbox are WORD pointers which on function exit will be filled in with
the width and height, respectively, of the minimum bounding box of a BOXCHAR
character.

BINDING crys_if(0x4D);

*charw = intout[1];
*charh = intout[2];
*boxw = intout[3];
*boxh = intout[4];

return intout[0];

RETURN VALUE This function returns the VDI handle for the current physical workstation used by
the AES.

CAVEATS There is currently no defined method of handling an error generated by this
function.

COMMENTS The return value of this function is required to open a virtual screen workstation.

SEE ALSO v_opnvwk()

graf_mkstate()
WORD graf_mkstate(mx, my, mb, ks)
WORD *mx, *my, *mb, *ks;

graf_mkstate() returns information about the current state of the mouse pointer,
buttons, and keyboard shift-key state.

OPCODE 79 (0x4F)

AVAILABILITY All AES versions.

PARAMETERS mx and my are WORD pointers, which, on function exit will be filled in with the
current x and y coordinates of the mouse pointer. mb is a WORD pointer, which,

6.94 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

on function exit will be filled in with the current button state of the mouse as
defined in evnt_button().

BINDING crys_if(0x4F);

*mx = intout[1];
*my = intout[2];
*mb = intout[3];
*ks = intout[4];

return intout[0];

RETURN VALUE The function return is currently reserved and currently equals 1.

SEE ALSO evnt_button(), vq_mouse()

graf_mouse()
WORD graf_mouse(mode, formptr)
WORD mode;
VOIDP formptr;

graf_mouse() alters the appearance of the mouse form and can be used to hide and
display the mouse pointer from the screen.

OPCODE 78 (0x4E)

AVAILABILITY All AES versions.

PARAMETERS mode is defined as follows:

mode # Meaning Shape

ARROW 0 Change the current mouse cursor
shape.

TEXT_CRSR 1 Change the current mouse cursor
shape.

BUSY_BEE 2 Change the current mouse cursor
shape.

POINT_HAND 3 Change the current mouse cursor
shape.

graf_mouse() - 6.95

T H E A T A R I C O M P E N D I U M

FLAT_HAND 4 Change the current mouse cursor
shape.

THIN_CROSS 5 Change the current mouse cursor
shape.

THICK_CROSS 6 Change the current mouse cursor
shape.

OUTLN_CROS
S

7 Change the current mouse cursor
shape.

USER_DEF 255 Change the current mouse cursor
shape.

Form is defined
below.

M_OFF 256 Remove the mouse cursor from the
screen.

No shape change.

M_ON 257 Display the mouse cursor. No shape change.

M_SAVE 258 Save the current mouse form in an
AES provided buffer. Check
appl_getinfo() for the presence of
this feature.

No shape change.

M_LAST 259 Restore the most recently saved
mouse form. Check appl_getinfo()
for the presence of this feature.

Changes the shape
as indicated.

M_RESTORE 260 Restore the mouse form to its last
shape. Check appl_getinfo() for the
presence of this feature.

Changes the shape
as indicated.

If mode is equal to USER_DEF, formptr must point to a MFORM structure as
defined below (if mode is different than USER_DEF, formptr should be NULL):

typedef struct {
short mf_xhot;
short mf_yhot;
short mf_nplanes;
short mf_fg;
short mf_bg;
short mf_mask[16];
short mf_data[16];

} MFORM;

mf_xhot and mf_yhot are the location of the mouse ‘hot-spot’. These values should
be in the range 0 to 15 and define what offset into the bitmap is actually the
‘point’.

mf_nplanes specifies the number of bit-planes used by the mouse pointer.
Currently, the value of 1 is the only legal value.

mf_fg and mf_bg are the mask and data colors of the mouse specified as palette

6.96 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

indexes. Usually these values will be 0 and 1 respectively.

mf_mask is an array of 16 WORD’ s which define the mask portion of the mouse
form. mf_data is an array of 16 WORD’ s which define the data portion of the
mouse form.

As of AES 4.0 and beyond, the AES may not allow a mouse form to change to
benefit another application. If it is absolutely necessary for the application to
display its mouse form, logically OR the mode parameter with M_FORCE
(0x8000) and make the call.

This will force the AES to change to your mouse form. It should, however, be
done within the scope of a wind_update() sequence.

BINDING intin[0] = mode;

addrin[0] = formptr;

return crys_if(0x4E);

RETURN VALUE graf_mouse() returns a 0 if an error occurred or non-zero otherwise.

CAVEATS There is currently no defined method of handling an error generated by this
function.

SEE ALSO vsc_form()

graf_movebox()
WORD graf_movebox(bw, bh, sx, sy, ex, ey)
WORD bw, bh, sx, sy, ex, ey;

graf_movebox() animates a moving box between two points on the screen. It is
used to give the user a visual ‘clue’ to an action undertaken by the application.

OPCODE 72 (0x48)

AVAILABILITY All AES versions.

PARAMETERS bw and bh specify the width and height, respectively, of the box to animate. sx and
sy specify the starting coordinates of the box. ex and ey specify the ending
coordinates of the box.

BINDING intin[0] = bw;
intin[1] = bh;
intin[2] = sx;

graf_rubberbox() - 6.97

T H E A T A R I C O M P E N D I U M

intin[3] = sy;
intin[4] = ex;
intin[5] = ey;

return crys_if(0x48);

RETURN VALUE The return value is 0 if an error occured or non-zero otherwise.

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS Some older ‘C’ bindings referred to this call as graf_mbox(). If your compiler
still uses this call you should update it.

graf_rubberbox()
WORD graf_rubberbox(bx, by, minw, minh, endw, endh)
WORD bx, by, minw, minh;
WORD *endw, *endh;

graf_rubberbox() allows the user to change the size of a box outline with a fixed
starting point.

OPCODE 70 (0x46)

AVAILABILITY All AES versions.

PARAMETERS bx and by define the fixed upper-left corner of the box to stretch or shrink.

minw and minh specify the minimum width and height that the rectangle can be
shrunk to.

endw and endh are WORD pointers which will be filled in with the ending width
and height of the box when the mouse button is released.

BINDING intin[0] = bx;
intin[1] = by;
intin[2] = minw;
intin[3] = minh;

crys_if(0x46);

*endw = intout[1];
*endh = intout[2];

return intout[0];

RETURN VALUE graf_rubberbox() returns 0 if an error occurred or non-zero otherwise.

6.98 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

CAVEATS There is currently no defined method for handling an error generated by this call.

COMMENTS This function should only be entered when the user has depressed the mouse button
as it returns when the mouse button is released.

SEE ALSO graf_dragbox(), graf_slidebox()

graf_shrinkbox()
WORD graf_shrinkbox(x1, y1, w1, h1, x2, y2, w2, h2)
WORD x1, y1, w1, h1, x2, y2, w2, h2;

graf_shrinkbox() displays an animated box shrinking from one rectangle to
another. It should be used to provide the user with a visual ‘clue’ to an action. It is
the complement function to graf_growbox().

OPCODE 74 (0x4A)

AVAILABILITY All AES versions.

PARAMETERS x1, y1, w1, and h1 are the coordinates of the rectangle to shrink to.

x2, y2, w2, and h2 are the coordinates of the rectangle to shrink from.

BINDING intin[0] = x1;
intin[1] = y1;
intin[2] = w1;
intin[3] = h1;
intin[4] = x2;
intin[5] = y2;
intin[6] = w2;
intin[7] = h2;

return crys_if(0x4A);

RETURN VALUE The function returns 0 if an error occurred or non-zero otherwise

CAVEATS There is currently no defined method of handling an error from this call.

COMMENTS This function is essentially the same as form_dial(FMD_SHRINK ,...

SEE ALSO form_dial(), graf_growbox()

graf_slidebox() - 6.99

T H E A T A R I C O M P E N D I U M

graf_slidebox()
WORD graf_slidebox(tree, parent, obj, orient)
OBJECT * tree;
WORD parent, obj,orient;

graf_slidebox() allows the user to slide a child object within the bounds of its
parent. It is often used to implement slider controls.

OPCODE 76 (0x4C)

AVAILABILITY All AES versions.

PARAMETERS tree is pointer to the object tree containing the child and parent objects.

parent is the object index of an object which bounds the movement of the child.
child is the object index of the object which can be moved within the bounds of
parent.

orient specifies the orientation of the allowed movement. 0 is horizontal (left-
right), 1 is vertical (up-down).

BINDING intin[0] = parent;
intin[1] = child;
intin[2] = orient;

addrin[0] = tree;

return crys_if(0x4C);

RETURN VALUE The function returns a value specifying the relative offset of the child within the
parent as a number between 0 and 1000.

COMMENTS This call can be used easily with sliders built into dialogs by making the slider bar
a TOUCHEXIT and calling this function when it is clicked. This call should only
be made when the mouse button is depressed as it returns when it is released.

SEE ALSO graf_movebox()

6.100 – Graphics Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

graf_watchbox()
WORD graf_watchbox(tree, obj, instate, outstate)
OBJECT * tree;
WORD obj, instate, outstate;

graf_watchbox() modifies the given state of a specified object depending on
whether the pointer is within the bounds of the object or outside the bounds of the
object as long as the left mouse button is held down.

OPCODE 75 (0x4B)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to the ROOT object of the tree which contains the object you
wish to watch. obj is the object index of the object to watch.

instate is the ob_state (see objc_change()) to apply while the mouse is inside of
the bounds of the object.
outstate is the ob_state to apply while the mouse is outside of the bounds of the
object.

BINDING intin[0] = obj;
intin[1] = instate;
intin[2] = outstate;

addrin[0] = tree;

return crys_if(0x4B);

RETURN VALUE graf_watchbox() returns a 0 if the mouse button was released outside of the
object or a 1 if the button was released inside of the object.

COMMENTS As this call returns when the mouse button is released, it should only be made
when the mouse button is depressed. This call is used internally by form_button()
and form_do() and is usually only necessary if you are replacing one of these
handlers.

SEE ALSO form_button()

T H E A T A R I C O M P E N D I U M

Menu Library

The Menu Library assists in the handling of system menu bars and popup menus. In addition, individual
control of menu items can also be handled through these functions. The members of the Menu Library are:

•• menu_attach()
•• menu_bar()
•• menu_icheck()
•• menu_ienable()
•• menu_istart
•• menu_popup()
•• menu_register()
•• menu_settings()
•• menu_text()
•• menu_tnormal()

menu_attach() – 6.103

T H E A T A R I C O M P E N D I U M

menu_attach()
WORD menu_attach(flag, tree, item, mdata)
WORD flag;
OBJECT * tree;
WORD item;
MENU * mdata;

menu_attach() allows an application to attach, change, or remove a sub-menu. It
also allows the application to inquire information regarding a currently defined
sub-menu.

OPCODE 37 (0x25)

AVAILABILITY This function is only available from AES version 3.30 and above. In AES
versions 4.0 and greater, appl_getinfo() should be used to determine its exact
functionality.

PARAMETERS flag indicates the action the application desires as follows:

Define Meaning

0 ME_INQUIRE Return information on a sub-menu attached to the menu item
designated by tree and item in mdata.

1 ME_ATTACH Attach or change a sub-menu. mdata should be initialized by
the application.

tree and item should be the OBJECT pointer and index to the
menu which is to have the sub-menu attached. If mdata is
NULLPTR , any sub-menu attached will be removed.

2 ME_REMOVE Remove a sub-menu. tree and item should be the OBJECT
pointer and index to the menu item which a sub-menu was
attached to. mdata should be NULLPTR .

In all cases except ME_REMOVE , mdata should point to a MENU structure as
defined here:

typedef struct
{

OBJECT *mn_tree;
WORD mn_menu;
WORD mn_item;
WORD mn_scroll;
WORD mn_keystate;

} MENU;

The MENU structure members are defined as follows:

6.104 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Member Meaning

mn_tree Points to the OBJECT tree of the sub-menu.

mn_menu Is an index to the parent object of the menu items.

mn_item Is the starting menu item.

mn_scroll If SCROLL_NO (0), the menu will not scroll. If SCROLL_YES (1), and the
number of menu items exceed the menu scroll height, arrows will appear
which allow the user to scroll selections.

mn_keystate This member is unused and should be 0 for this call.

BINDING intin[0] = flag;
intin[1] = item;

addrin[0] = tree;
addrin[1] = mdata;

return crys_if(0x25);

RETURN VALUE menu_attach() returns 0 if an error occurred and the sub-menu could not be
attached or 1 if the operation was successful.

CAVEATS AES versions supporting menu_attach() less than 4.1 contain a bug which causes
the AES to crash when changing or removing a sub-menu attachment.

At present, if you wish to attach a scrolling menu, the menu items must be
G_STRING’s.

COMMENTS If a menu bar having attachments is removed with
menu_bar(NULL , MENU_REMOVE) those attachments are removed by the
system and must be reattached with this call if the menu is redisplayed at a later
time.

Several recommendations regarding sub-menus should be adhered to:

1. Menu items which will have sub-menus attached to them should be
padded with blanks to the end of the menu.

2. Menu items which will have sub-menus attached to them should not have
a keyboard equivalent.

3. Sub-menus will display faster if a byte-boundary is specified.
4. Sub-menus will be shifted vertically to align the start object with the

main menu item which it is attached to.
5. Sub-menus will always be adjusted to automatically fit on the screen.
6. There can be a maximum of 64 sub-menu attachments per process

(attaching a sub-menu to more than one menu item counts as only one
attachment).

7. Do not attach a sub-menu to itself.
8. As a user-interface guideline, there should only be one level of sub-

menus, though it is possible to have up to four levels currently.
9. menu_istart() works only on sub-menus attached with menu_attach().

menu_bar() - 6.105

T H E A T A R I C O M P E N D I U M

SEE ALSO menu_istart(), menu_settings(), menu_popup()

menu_bar()
WORD menu_bar(tree, mode)
OBJECT * tree;
WORD mode;

menu_bar() displays a specialized OBJECT tree on the screen as the application
menu. It can also be used to determine the owner of the currently displayed menu
bar in a multitasking AES.

OPCODE 30 (0x1E)

AVAILABILITY All AES versions.

PARAMETERS tree is a pointer to an OBJECT tree which has been formatted for use as a system
menu (for more information on the OBJECT format of a menu see the discussion
on objects in this chapter).

mode is a flag indicating the action to take as follows:

Name mode Meaning

MENU_REMOVE 0 Erase the menu bar specified in tree.

MENU_INSTALL 1 Display the menu bar specified in tree.

MENU_INQUIRE -1 Return the AES application identifier of the process
which owns the currently displayed system menu. tree
can be set to NULL . The AES version must be greater
than 4.0 and appl_getinfo() must indicate that this is
feature is supported.

BINDING intin[0] = mode;

addrin[0] = tree;

return crys_if(0x1E);

RETURN VALUE If mode is MENU_REMOVE (0) or MENU_INSTALL (1), the return value
indicates an error condition where >0 means no error and 0 means an error
occurred. In inquiry mode (mode = MENU_INQUIRE (-1)), menu_bar() returns
the application identified of the process which owns the currently displayed menu
bar.

COMMENTS The safest way to redraw an application’s menu bar is to redraw it only if you are

6.106 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

sure it is currently the active menu bar. In a non-multitasking AES, this is a
certainty, however, in a multitasking AES you should first inquire the menu bar’s
owner within the scope of a wind_update(BEG_UPDATE) call to prevent the
system from swapping active menu bars while in the process of redrawing.

SEE ALSO menu_ienable(), menu_icheck()

menu_icheck()
WORD menu_icheck(tree, obj, check)
OBJECT * tree;
WORD obj, check;

menu_icheck() adds/removes a checkmark in front of a menu item.

OPCODE 31 (0x1F)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the current menu. obj should be the object index of
a menu item. If check is UNCHECK (0), no checkmark will be displayed next to
this item whereas if check is CHECK (1), a checkmark will be displayed.

BINDING intin[0] = obj;
intin[1] = check;

addrin[0] = obj;

return crys_if(0x1F);

RETURN VALUE menu_icheck() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_ienable()
WORD menu_ienable(tree, obj, flag)
OBJECT * tree;
WORD obj, flag;

menu_ienable() enables/disables menu items.

OPCODE 32 (0x20)

menu_istart() - 6.107

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu to alter. obj is the object index of the
menu item to modify. flag should be set to DISABLE (0) to disable the item or
ENABLE (1) to enable it.

BINDING intin[0] = obj;
intin[1] = flag;

addrin[0] = tree;

return crys_if(0x20);

RETURN VALUE menu_icheck() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO objc_change()

menu_istart()
WORD menu_istart(flag, tree, imenu, item)
WORD flag;
OBJECT * tree;
WORD imenu, item;

menu_istart() shifts a sub-menu that is attached to a menu item to align vertically
with the specified object in the sub-menu.

OPCODE 38 (0x26)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS flag should be set to MIS_SETALIGN (1) to modify the alignment of a sub-menu
and its parent menu item. If flag is set to MIS_GETALIGN (0), no modifications
will be made, however the sub-menu item index which is currently aligned with its
parent menu item is returned.

tree points to the object tree of the menu to alter. imenu specifies the object within
the submenu which will be aligned with menu item item.

BINDING intin[0] = flag;
intin[1] = imenu;
intin[2] = item;

addrin[0] = tree;

return crys_if(0x26);

6.108 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

RETURN VALUE menu_istart() returns 0 if an error occurred or the positive object index of the
sub-menu item which is currently aligned with its parent menu item.

COMMENTS Generally, a sub-menu is aligned so that the currently selected sub-menu item is
aligned with its parent menu.

SEE ALSO menu_attach()

menu_popup()
WORD menu_popup(menu, xpos, ypos, mdata)
MENU * menu;
WORD xpos, ypos;
MENU * menu;

menu_popup() displays a popup menu and returns the user’s selection.

OPCODE 36 (0x24)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS menu points to a MENU structure (defined under menu_attach()) containing the
popup menu. xpos and ypos specify the location at which the upper-left corner of
the starting object will be placed.

If the function returns a value of 1, the MENU structure pointed to by mdata will
be filled in with the ending state of the menu (including the object the user
selected).

As of AES version 4.1, if menu.mn_scroll is set to SCROLL_LISTBOX (-1)
when this function is called, a drop-down list box will be displayed instead of a
popup menu.

Drop-down list boxes will only display a scroll bar if at least eight entries exist. If
you want to force the scroll bar to appear, pad the object with empty G_STRING
objects with their DISABLED flag set.

BINDING intin[0] = xpos;
intin[1] = ypos;

addrin[0] = menu;
addrin[1] = mdata;

return crys_if(0x24);

RETURN VALUE menu_popup() returns 0 if an error occurred or 1 if successful.

menu_register() - 6.109

T H E A T A R I C O M P E N D I U M

SEE ALSO menu_attach(), menu_settings()

menu_register()
WORD menu_register(ap_id, title)
WORD ap_id;
char *title;

menu_register() registers desk accessories in the ‘Desk’ menu and renames
MultiTOS applications which appear there.

OPCODE 35 (0x23)

AVAILABILITY All AES versions.

PARAMETERS ap_id specifies the application identifier of the application to register. title points
to a NULL -terminated string containing the title which is to appear in the ‘Desk’
menu for the accessory or application.

If ap_id is set to REG_NEWNAME (-1) then the process name given in title will
be used as the new process name. The new process name should be exactly eight
characters terminated with a NULL . Pad the string with space characters if
necessary.

BINDING intin[0] = ap_id;

addrin[0] = title;

return crys_if(0x23);

RETURN VALUE menu_register() returns a -1 if an error occurred or the menu identifier otherwise.

VERSION NOTES Applications other than desk accessories should not call this function unless they
are running under MultiTOS .

COMMENTS Desk accessories should store the return value as this is the value that will be
included with future AC_OPEN messages to identify the accessory.

Applications running under MultiTOS may use this function to provide a more
functional title for the ‘Desk’ menu than the program’s filename.

Calling menu_register() with a parameter of REG_NEWNAME is used to
change the internal process name of the application returned by appl_find() and
appl_search(). This is useful if you know another process will attempt to find your

6.110 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

application as a specific process name and the user may have renamed your
application filename (normally used as the process name).

menu_settings()
WORD menu_settings(flag, set)
WORD flag;
MN_SET *set;

menu_settings() changes the global settings for popup and scrollable menus.

OPCODE 39 (0x27)

AVAILABILITY This function is only available with AES versions 3.30 and above.

PARAMETERS If flag is 0, current settings are read into the MN_SET structure pointed to by set.
If flag is 1, current settings are set from the MN_SET structure pointed to by set.
MN_SET is defined as follows:

typedef struct
{

/* Submenu-display delay in milliseconds */
LONG display;

/* Submenu-drag delay in milliseconds */
LONG drag;

/* Single-click scroll delay in milliseconds*/
LONG delay;

/* Continuous-scroll delay in milliseconds */
LONG speed;

/* Menu scroll height (in items) */
WORD height;

} MN_SET;

BINDING intin[0] = flag;

addrin[0] = set;

return crys_if(0x27);

RETURN VALUE menu_settings() always returns 1.

COMMENTS The defaults set by menu_settings() are global and not local to an application.
You should therefore limit your use of this function to system applications like
CPX’s and so forth.

menu_text() - 6.111

T H E A T A R I C O M P E N D I U M

menu_text()
WORD menu_text(tree, obj, text)
OBJECT * tree;
WORD obj;
char *text;

menu_text() changes the text of a menu item.

OPCODE 34 (0x22)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu bar. obj specifies the object index of the
menu item to change. text points to a NULL -terminated character string containing
the new text.

BINDING intin[0] = obj;

addrin[0] = tree;
addrin[1] = text;

return crys_if(0x22);

RETURN VALUE menu_text() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS The new menu item text must be no larger than the original menu item text.

menu_tnormal()
WORD menu_tnormal(tree, obj, flag)
OBJECT * tree;
WORD obj, flag;

menu_tnormal() highlights/un-highlights a menu-title.

OPCODE 33 (0x21)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the menu. obj specifies the object index of the title
to change. flag should be set to HIGHLIGHT (0) to display the title in reverse
(highlighted) or UNHIGHLIGHT (1) to display it normally.

6.112 – Menu Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = obj
intin[1] = flag

addrin[1] = tree

return crys_if(0x21);

RETURN VALUE menu_tnormal() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This call is usually called by an application after a MN_SELECTED message is
received and processed to return the menu title to normal.

T H E A T A R I C O M P E N D I U M

Object Library

The Object Library is responsible for the drawing and manipulation of AES objects such as boxes,
strings, icons, etc. See earlier in this chapter for a complete discussion of AES objects. The Object
Library includes the following functions:

•• objc_add()
•• objc_change()
•• objc_delete()
•• objc_draw()
•• objc_edit()
•• objc_find()
•• objc_offset()
•• objc_order()
•• objc_sysvar()

objc_add() – 6.115

T H E A T A R I C O M P E N D I U M

objc_add()
WORD objc_add(tree, parent, child)
OBJECT * tree;
WORD parent, child;

objc_add() establishes a child object’s relationship to its parent.

OPCODE 40 (0x28)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree to modify. parent and child specify the parent and
child object to update.

BINDING intin[0] = parent;
intin[1] = child;

addrin[0] = tree;

return crys_if(0x28);

RETURN VALUE objc_add() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS In order for this function to work, the object to be added must be already be a
member of the OBJECT array. This function simply updates the ob_next,
ob_head, and ob_tail structure members of OBJECTs in the object tree. These
fields should be initialized to NIL (0) in the child to be added.

SEE ALSO objc_order(), objc_delete()

objc_change()
WORD objc_change(tree, obj, rsvd, ox, oy, ow, oh, newstate, drawflag)
OBJECT * tree;
WORD obj, rsvd, ox, oy, ow, oh, newstate, drawflag;

objc_change() changes the display state of an object.

OPCODE 47 (0x2F)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the object to modify. obj specifies the object to

6.116 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

modify.

rsvd is reserved and should be 0.

ox, oy, ow, and oh specify the clipping rectangle if the object is to be redrawn.

newstate specifies the new state of the object (same as ob_state).

If drawflag is NO_DRAW (0) the object is not redrawn whereas if drawflag is
REDRAW (1) the object is redrawn.

BINDING intin[0] = obj;
intin[1] = rsvd;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;
intin[6] = newstate;
intin[7] = drawflag;

addrin[0] = tree;

return crys_if(0x2F);

RETURN VALUE objc_change() returns 0 if an error occurred and non-zero otherwise.

COMMENTS In general, if not redrawing the object, it is usually quicker to manipulate the
object tree directly.

SEE ALSO objc_draw()

objc_delete()
WORD objc_delete(tree, obj)
OBJECT * tree;
WORD obj;

objc_delete() removes an object from an object tree.

OPCODE 41 (0x29)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of the object to delete. obj is the object to be deleted.

BINDING intin[0] = obj;

addrin[0] = tree;

objc_draw() – 6.117

T H E A T A R I C O M P E N D I U M

return crys_if(0x29);

RETURN VALUE objc_delete() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function does not move other objects in the tree structure, it simply unlinks the
specified object from the object chain by updating the other object’s ob_next,
ob_head, and ob_tail structure members.

SEE ALSO objc_add()

objc_draw()
WORD objc_draw(tree, obj, depth, ox, oy, ow, oh)
OBJECT * tree;
WORD obj, depth, ox, oy, ow, oh;

objc_draw() renders an AES object tree on screen.

OPCODE 42 (0x2A)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree to draw. obj specifies the object index at which
drawing is to begin.

depth specifies the maximum object depth to draw (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox, oy, ow, and oh specify an AES style rectangle which defines the clip rectangle
to enforce during drawing.

BINDING intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;
intin[4] = ow;
intin[5] = oh;

addrin[0] = tree;

return crys_if(0x2A);

RETURN VALUE objc_draw() returns 0 if an error occurred or non-zero otherwise.

6.118 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

objc_edit()
WORD objc_edit(tree, obj, kc, idx, mode)
OBJECT * tree;
WORD obj, kc;
WORD * idx
WORD mode;

objc_edit() allows manual control of an editable text field.

OPCODE 46 (0x2E)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the editable object obj to modify. mode
specifies the action of the call and the meaning of the other parameters as
follows:

mode Value Meaning

ED_START 0 Reserved for future use. Do not call.

ED_INIT 1 Display the edit cursor in the object specified. kc is ignored.
The WORD pointed to by idx is filled in with the current
index of the edit cursor in the field.

ED_CHAR 2 A key has been pressed that needs special processing. kc
contains the keyboard scan code in the high byte and ASCII
code in the low byte. idx points to the current index of the
text cursor in the field. idx will be updated as a result of this
call.

ED_END 3 Turn off the text cursor.

BINDING intin[0] = obj;
intin[1] = kc;
intin[2] = *idx;
intin[3] = mode;

addrin[0] = tree;

crys_if(0x2E);

*idx = intout[1];
return intout[0];

RETURN VALUE objc_edit() returns 0 if an error occurred or non-zero otherwise.

COMMENTS This function is usually used in conjunction with form_keybd() in a custom
form_do() handler.

objc_find() – 6.119

T H E A T A R I C O M P E N D I U M

SEE ALSO form_keybd()

objc_find()
WORD objc_find(tree, obj, depth, ox, oy)
OBJECT * tree;
WORD obj, depth, ox, oy;

objc_find() determines which object is found at a given coordinate.

OPCODE 43 (0x2B)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing the objects to search. The search starts
from object index obj forward in the object tree.

depth specifies the depth in the tree to search (a value of 1 searches only first
generation objects, a value of 2 searches up to second generation objects, up to a
maximum of 7 to search all objects).

ox and oy specify the coordinate to search at.

BINDING intin[0] = obj;
intin[1] = depth;
intin[2] = ox;
intin[3] = oy;

addrin[0] = tree;

return crys_if(0x2B);

RETURN VALUE objc_find() returns the object index of the object found at coordinates (ox, oy) or
-1 if no object is found.

objc_offset()
WORD objc_offset(tree, obj, ox, oy)
OBJECT * tree;
WORD obj;
WORD *ox, *oy;

objc_offset() calculates the true screen coordinates of an object.

OPCODE 44 (0x2C)

6.120 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree containing obj. The WORDs pointed to by ox and oy
will be filled in with the true X and Y screen position of object obj.

BINDING intin[0] = obj;

addrin[0] = tree;

crys_if(0x2C);

*ox = intout[1];
*oy = intout[2];

return intout[0];

RETURN VALUE objc_offset() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The ob_x and ob_y structure members of objects give an offset from their parent as
opposed to true screen location. This call is used to determine a true screen
coordinate.

The values returned by objc_offset() coupled with the ob_width and ob_height
members do not take into account negative borders, shadowing, or sculpturing.
When redrawing an object you are responsible for using these values to and the
object’s state to compensate for a correct clipping rectangle.

SEE ALSO objc_draw()

objc_order()
WORD objc_order(tree, obj, pos)
OBJECT * tree;
WORD obj, pos;

objc_order() changes the position of an object relative to other child objects of
the same parent.

OPCODE 45 (0x2D)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the object tree of object obj which is to be moved. pos specifies the
new position of the object as follows:

objc_sysvar() – 6.121

T H E A T A R I C O M P E N D I U M

Name pos Meaning

OO_LAST -1 Make object the last child.

OO_FIRST 0 Make object the first child.

— 1 Make object the second child.

— 2– etc...

BINDING intin[0] = obj;
intin[1] = pos;

addrin[0] = tree;

return crys_if(0x2D);

RETURN VALUE objc_order() returns 0 if an error occurred or non-zero otherwise.

COMMENTS objc_order() does not actually move structure elements in memory. It works by
updating the OBJECT tree’s ob_head, ob_tail, and ob_next fields to ‘move’ the
OBJECT in the tree hierarchy.

objc_sysvar()
WORD objc_sysvar(mode, which, in1, in2, out1, out2)
WORD mode, which, in1, in2;
WORD *out1, *out2;

objc_sysvar() returns/modifies information about the color and placement of 3D
object effects.

OPCODE 48 (0x30)

AVAILABILITY Available as of AES version 3.40.

PARAMETERS mode determines whether attributes should be read or modified. A value of
SV_INQUIRE (0) will read the current values whereas a value of SV_SET (1)
will modify the current values. which determines what attribute you wish to read
or modify.

When reading values, in1 and in2 are unused. The two return values are placed in
the WORDs pointed to by out1 and out2. When modifying values, out1 and out2
are unused. in1 and in2 specify the new values for the attribute.

The meanings of the two input/output values referred to as val1 and val2 are as
follows:

6.122 – Object Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

Name which Values

LK3DIND 1 If val1 is 1, the text of indicator objects does move when selected,
otherwise, if 0, it does not.

If val2 is 1, the color of indicator objects does change when
selected, otherwise, if 0, it does not.

LK3DACT 2 Same as LK3DIND for activator objects.

INDBUTCOL 3 val1 specifies the default color for indicator objects. val2 is
unused.

ACTBUTCOL 4 val1 specifies the default color for activator objects. val2 is
unused.

BACKGRCO
L

5 val1 specifies the default color for background objects. val2 is
unused.

AD3DVAL 6 val1 specifies the number of extra pixels on each horizontal side of
an indicator or activator object needed to accomodate 3D effects.

val2 specifies the number of extra pixels on each vertical side of
an indicator or activator object needed to accomodate 3D effects.

This setting may only be read, not modified.

BINDING intin[0] = mode;
intin[1] = which;
intin[2] = in1;
intin[3] = in2;

crys_if(0x30);

*out1 = intout[1];
*out2 = intout[2];

return intout[0];

RETURN VALUE objc_sysvar() returns 0 if unsuccessful or non-zero otherwise.

COMMENTS Applications should not use objc_sysvar() to change these settings since all
changes are global. Only CPXs or Desk Accessories designed to modify these
parameters should.

T H E A T A R I C O M P E N D I U M

Resource Library

The Resource Library is responsibe for the loading/unloading of resource files and the manipulation of
resource objects in memory. The members of the Resource Library are:

•• rsrc_free()
•• rsrc_gaddr()
•• rsrc_load()
•• rsrc_obfix()
•• rsrc_rcfix()
•• rsrc_saddr()

rsrc_free() – 6.125

T H E A T A R I C O M P E N D I U M

rsrc_free()
WORD rsrc_free(VOID)

rsrc_free() releases memory allocated by rsrc_load() for an application’s
resource.

OPCODE 111 (0x6F)

AVAILABILITY All AES versions.

BINDING return crys_if(0x6F);

RETURN VALUE rsrc_free() returns 0 if an error occurred or non-zero otherwise.

COMMENTS rsrc_free() should be called before an application which loaded a resource using
rsrc_load() exits.

SEE ALSO rsrc_load()

rsrc_gaddr()
WORD rsrc_gaddr(type, index, addr)
WORD type, index;
VOIDPP addr;

rsrc_gaddr() returns the address of an object loaded with rsrc_load().

OPCODE 112 (0x70)

AVAILABILITY All AES versions.

PARAMETERS The pointer pointed to by addr will be filled in with the address of the indexth

resource object of type type. Valid values for type are as follows:

Name type Resource Object

R_TREE 0 Object tree

R_OBJECT 1 Individual object

R_TEDINFO 2 TEDINFO structure

R_ICONBLK 3 ICONBLK structure

R_BITBLK 4 BITBLK structure

R_STRING 5 Free String data

6.126 – Resource Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

R_IMAGEDATA 6 Free Image data

R_OBSPEC 7 ob_spec field within OBJECTs

R_TEPTEXT 8 te_ptext within TEDINFOs

R_TEPTMPLT 9 te_ptmplt within TEDINFOs

R_TEPVALID 10 te_pvalid within TEDINFOs

R_IBPMASK 11 ib_pmask within ICONBLK s

R_IBPDATA 12 ib_pdata within ICONBLK s

R_IBPTEXT 13 ib_ptext within ICONBLK s

R_BIPDATA 14 bi_pdata within BITBLK s

R_FRSTR 15 Free string

R_FRIMG 16 Free image

BINDING intin[0] = type;
intin[1] = index;

crys_if(0x70);

*addr = addrout[0];

return intout[0];

RETURN VALUE rsrc_gaddr() returns a 0 if the address in addr is valid or non-zero if the object
did not exist.

COMMENTS This function is most often used to obtain the address of OBJECT trees, ‘free’
strings, and ‘free’ images after loading a resource file.

SEE ALSO rsrc_saddr()

rsrc_load()
WORD rsrc_load(fname)
char *fname;

rsrc_load() loads and allocates memory for the named resource file.

OPCODE 110 (0x6E)

AVAILABILITY All AES versions.

PARAMETERS fname is a character pointer to a NULL -terminated GEMDOS file specification
of the resource to load.

BINDING addrin[0] = fname;

rsrc_obfix() – 6.127

T H E A T A R I C O M P E N D I U M

return crys_if(0x6E);

RETURN VALUE rsrc_load() returns 0 if successful or non-zero if an error occurred.

COMMENTS In addition to loading the resource, all OBJECT coordinates are converted from
character based coordinates to screen coordinates.

SEE ALSO rsrc_free()

rsrc_obfix()
WORD rsrc_obfix(tree, obj)
OBJECT * tree;
WORD obj;

rsrc_obfix() converts an object’s coordinates from character-based to pixel-
based.

OPCODE 114 (0x72)

AVAILABILITY All AES versions.

PARAMETERS tree specifies the OBJECT tree containing the object obj to convert.

BINDING intin[0] = obj;

addrin[0] = tree;

return crys_if(0x72);

RETURN VALUE rsrc_obfix() returns a 0 if successful or non-zero otherwise.

COMMENTS All objects in ‘.RSC’ files have their coordinates based on character positions
rather than screen coordinates to allow an object tree to be shown in any
resolution. This function converts those character coordinates to pixel coordinates
based on the current screen resolution.

SEE ALSO rsrc_load(), rsrc_rcfix()

6.128 – Resource Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

rsrc_rcfix()
WORD rsrc_rcfix(rc_header)
VOID * rc_header;

rsrc_rcfix() fixes up coordinates and memory pointers of raw resource data in
memory.

OPCODE 115 (0x73)

AVAILABILITY Available only in AES versions 4.0 and greater. The presence of this call should
also be checked for using appl_getinfo().

PARAMETERS rc_header is a pointer to an Atari Resource Construction Set (or compatible)
resource file header in memory.

BINDING addrin[0] = rc_header;

return crys_if(0x73);

RETURN VALUE rsrc_rcfix() returns a 0 if successful or non-zero otherwise.

COMMENTS If a resource has already been loaded with rsrc_load() it must be freed by
rsrc_free() prior to this call. In addition, resources identified with this call must
likewise be freed before program termination or another resource file is needed.

SEE ALSO rsrc_obfix()

rsrc_saddr()
WORD rsrc_saddr(type, index, addr)
WORD type, index;
VOID * addr;

rsrc_saddr() sets the address of a resource element.

OPCODE 113 (0x71)

AVAILABILITY All AES versions.

PARAMETERS type specifies the type of resource element to set as defined under rsrc_gaddr().
index specifies the index of the element to modify (0 based). addr specifies the
actual address that will be placed in the appropriate data structure.

rsrc_saddr() – 6.129

T H E A T A R I C O M P E N D I U M

BINDING intin[0] = type;
intin[1] = index;

addrin[0] = addr;

return crys_if(0x71);

RETURN VALUE rsrc_saddr() returns 0 if an error occurred or non-zero otherwise.

COMMENTS In most cases, direct manipulation of the structures involved is quicker and easier
than using this call.

SEE ALSO rsrc_gaddr(), rsrc_load()

T H E A T A R I C O M P E N D I U M

Scrap Library

The Scrap Library is used to maintain the location of the clipboard directory used for interprocess data
exchange. The members of the Scrap Library are:

•• scrp_read()
•• scrp_write()

scrp_read() – 6.133

T H E A T A R I C O M P E N D I U M

scrp_read()
WORD scrp_read(cpath)
char *cpath;

scrp_read() returns the location of the current clipboard directory.

OPCODE 80 (0x50)

AVAILABILITY All AES versions.

PARAMETERS cpath is a pointer to a character buffer of at least 128 bytes into which the
clipboard path will be placed.

BINDING addrin[0] = cpath;

return crys_if(0x50);

RETURN VALUE scrp_read() returns 0 if the clipboard path had not been set or non-zero if cpath
was properly updated.

CAVEATS The system scrap directory is a global resource. Some programs incorrectly call
scrp_write() with a path and filename when only a pathname should be used. The
following is an example of a correctly formatted cpath argument:

C:\CLIPBRD\

Unfortunately, not all programs adhere exactly to this standard. For this reason,
programs reading this information from scrp_read() should be especially careful
that the information returned is parsed correctly. In addition, don’t count on a
trailing backslash or the existence of a drive specification.

COMMENTS If a value of 0 is returned and the application wishes to write a scrap to the
clipboard you should follow these steps:

• Create a folder ‘\CLIPBRD\’ on the root directory of the user’s boot
drive (‘C:’ or ‘A:’).

• Write your scrap to the directory as ‘SCRAP.???’ where ‘???’ signifies
the type of information contained in the file.

• Allow other applications to access this information by calling
scrp_write() with the new clipboard path. For example
“C:\CLIPBRD\”.

A detailed discussion of the proper clipboard data exchange protocol, including
information about a scrap directory semaphore useful with MultiTOS , is given
earlier in this chapter.

6.134 – Scrap Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

SEE ALSO scrp_write()

scrp_write()
WORD scrp_write(cpath)
char *cpath;

scrp_write() sets the location of the clipboard directory.

OPCODE 81 (0x51)

AVAILABILITY All AES versions.

PARAMETERS cpath points to a NULL -terminated path string containing a valid drive and path
specification with a closing backslash. The following is an example of a correctly
formatted cpath argument:

C:\CLIPBRD\

BINDING addrin[0] = cpath;

return crys_if(0x51);

RETURN VALUE scrp_write() returns 0 if an error occurred or non-zero otherwise.

COMMENTS The scrap directory is a global resource. This call should only be used in two
circumstances as follows:

• when used to set the default location of the scrap directory using a CPX
or accessory at bootup or by the user’s request.

• when scrp_read() returns an error value and you need to create the
clipboard to write information to it.

The clipboard data exchange protocol is discussed in greater detail earlier in this
chapter.

SEE ALSO scrp_read()

T H E A T A R I C O M P E N D I U M

Shell Library

The Shell Library contains several miscellaneous functions most often used by the GEM Desktop and
other ‘Desktop-like’ applications. Other applications may, however, need specific functions of the Shell
Library for various tasks. The members of the Shell Library are:

•• shel_envrn()
•• shel_find()
•• shel_get()
•• shel_put()
•• shel_read()
•• shel_write()

shel_envrn() – 6.137

T H E A T A R I C O M P E N D I U M

shel_envrn()
WORD shel_envrn(value, name)
char ** value;
char *name;

shel_envrn() searches the current environment string for a specific variable.

OPCODE 125 (0x7D)

AVAILABILITY All AES versions.

PARAMETERS value points to a character pointer which will be filled in with the address of the
first character in the environment string following the string given by name. If the
string given by name is not found, value will be filled in with NULL . For
instance, suppose the current environment looked like this:

PATH=C:\;D:\;E:\

A call made to shel_envrn() with name pointing to the string ‘PATH=’ would set
the pointer pointed to by value to the string ‘C:\;D:\;E:\’ above.

BINDING addrin[0] = value;
addrin[1] = name;

return crys_if(0x7D);

RETURN VALUE shel_envrn() currently always returns 1.

VERSION NOTES AES versions prior to 1.4 only accepted semi-colons as separators between
multiple ‘PATH=’arguments. Newer versions accept commas as well.

COMMENTS The character string pointed to by name should include the name of the variable
and the equals sign.

shel_find()
WORD shel_find(buf)
char *buf;

shel_find() searches for a file along the AES’s current path, any paths specified by
the ‘PATH’ environmental variable, and the calling application’s path.

OPCODE 124 (0x7C)

6.138 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS buf should point to a character buffer of at least 128 characters and contain the
filename of the file to search for on entry. If the function was able to find the file,
the buffer pointed to by buf will be filled in with the full pathname of the file upon
return.

BINDING addrin[0] = buf;

return crys_if(0x7C);

RETURN VALUE shel_find() returns 0 if the file was not found or non-zero otherwise.

SEE ALSO shel_write()

shel_get()
WORD shel_get(buf, length)
char *buf;
WORD length;

shel_get() copies the contents of the AES’s shell buffer (normally the
‘DESKTOP.INF’ or ‘NEWDESK.INF’ file) into the specified buffer.

OPCODE 122 (0x7A)

AVAILABILITY All AES versions.

PARAMETERS buf points to a buffer at least length bytes long into which the AES should copy
the shell buffer into.

BINDING intin[0] = length;

addrin[0] = buf;

return crys_if(0x7A);

RETURN VALUE shel_get() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES AES versions prior to version 1.4 had a shell buffer size of 1024 bytes. Versions
1.4 to 3.0 had a shell buffer size of 4192 bytes.

In AES versions 4.0 or greater the shell buffer is no longer of a fixed size. When
appl_getinfo() indicates that this feature is supported, length can be specified as
SHEL_BUFSIZE (-1) to return the size of the current shell buffer.

shel_put() – 6.139

T H E A T A R I C O M P E N D I U M

SEE ALSO shel_put()

shel_put()
WORD shel_put(buf, length)
char *buf;
WORD length;

shel_put() copies information into the AES’s shell buffer.

OPCODE 123 (0x7B)

AVAILABILITY All AES versions.

PARAMETERS buf points to a user memory buffer from which length bytes are to be copied into
the shell buffer.

BINDING intin[0] = length;

addrin[0] = buf;

return crys_if(0x7B);

RETURN VALUE shel_put() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES Prior to AES version 4.0 this function would only copy as many bytes as would fit
into the current buffer. As of version 4.0, the AES will dynamically allocate more
memory as needed (up to 32767 bytes) for the shell buffer.

COMMENTS The Desktop uses the information in the shell buffer for several purposes.
Applications should not use the shell buffer for their own purposes.

SEE ALSO shel_get()

shel_read()
WORD shel_read(name, tail)
char *name, *tail;

shel_read() is used to determine the current application’s parent and the command
tail used to call it.

OPCODE 120 (0x78)

6.140 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS name points to a buffer which upon exit will be filled in with the complete file
specification of the application which launched the current process.

tail will likewise be filled in with the initial command line. The first BYTE of the
command line indicates the length of the string which actually begins at &tail[1] .

BINDING addrin[0] = name;
addrin[1] = tail;

return crys_if(0x78);

RETURN VALUE shel_read() returns 0 if an error occurred or non-zero otherwise.

CAVEATS shel_read() actually returns the arguments to the last shel_write() so if a process
was Pexec()’ed, the information returned will be incorrect.

shel_write()
WORD shel_write(mode, wisgr, wiscr, cmd, tail)
WORD mode, wisgr, wiscr;
char *cmd, *tail;

shel_write() is a multi-purpose function which handles the manipulation and
launching of processes.

OPCODE 121 (0x79)

AVAILABILITY All AES versions. In AES versions 4.0 and above, appl_getinfo() can be used to
determine the highest legal value for mode as well as the functionality of extended
mode bits.

PARAMETERS mode specifies the meaning of the rest of the parameters as follows:

Name mode Meaning

SWM_LAUNCH 0 Launch a GEM or TOS application or GEM desk
accessory depending on the extension of the file. This
mode is only available as of AES version 4.0. wisgr is not
used in mode SWM_LAUNCH (0). When the lower eight
bits of mode are SWM_LAUNCH (0),
SWM_LAUNCHNOW (1), or SWM_LAUNCHACC (3),
appropriate bits in the upper byte may be set to enter
‘extended’ mode. The bits in the upper byte are assigned
as follows:

shel_write() – 6.141

T H E A T A R I C O M P E N D I U M

Name Mask Meaning
SW_PSETLIMIT 0x100 Initial Psetlimit()
SW_PRENICE 0x200 Initial Prenice()
SW_DEFDIR 0x400 Default Directory
SW_ENVIRON 0x800 Environment

If the upper byte is empty, extended mode is not entered
and cmd specifies the filename (to search for the file with
shel_find()) or the complete file specification. Otherwise,
if any extended bits are set, cmd points to a structure as
shown below.

typedef struct _shelw
{

char *newcmd;
LONG psetlimit;
LONG prenice;
char *defdir;
char *env;

} SHELW;

_shelw.newcmd points to the filename formatted in the
manner indicated above.

If bit 8 (SW_PSETLIMIT) of mode is set, _shelw.psetlimit
contains the maximum memory size available to the
process.

If bit 9 of mode is (SW_PRENICE) set, _shelw.prenice
contains the process priority of the process to launch.

If bit 10 of mode (SW_DEFDIR) is set, _shelw.defdir
points to a character string containing the default directory
for the application begin launched.

If bit 11 of mode (SW_ENVIRON) is set, _shelw.env
points to a valid environment string for the process.

tail points to a buffer containing the command tail to pass
to the process. If wiscr is set to CL_NORMAL (0), tail is
passed normally, otherwise, if wiscr is set to CL_PARSE
(1), the AES will parse tail and set up an ARGV
environment string.

modes SWM_LAUNCH (0), SWM_LAUNCHNOW (1),
and SWM_LAUNCHACC (3) return the AES id of the
started process. If a 0 is returned, then the process was
not launched.

Under MultiTOS , processes are launched concurrently
with their parent. An exit code is returned in a CH_EXIT
message when the child terminates. See evnt_mesag() .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

6.142 – Shell Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

SWM_LAUNCHNOW 1 Launch a GEM or TOS application based on the value of
wisgr. If wisgr is TOSAPP (0), the application will be
launched as a TOS application, otherwise if wisgr is
GEMAPP (1), the application will be launched as a GEM
application. For the meaning of other parameters, see
mode SWM_LAUNCH (0). The extended bits in mode
are only supported by AES versions of at least 4.0.

Parent applications which launch children using this mode
are suspended under MultiTOS .

In AES versions 4.0 and above, appl_getinfo() should be
used to determine the exact result of this call.

SWM_LAUNCHACC 3 Launch a GEM desk accessory. For the meaning of other
parameters, see mode SWM_LAUNCH (0). This mode is
only supported by AES versions of at least 4.0.

SWM_SHUTDOWN 4 Manipulate ‘Shutdown’ mode. Shutdown mode is usually
used prior to a resolution change to cause system
processes to terminate. wisgr, cmd, and tail are ignored
by this call. The value of wiscr determines the action this
call takes as follows:

Name wiscr Meaning
SD_ABORT 0 Abort shutdown mode
SD_PARTIAL 1 Partial shutdown mode
SD_COMPLETE 2 Complete shutdown mode

During a shutdown, processes which have registered
themselves as accepting AP_TERM messages will be
sent them and all accessories will be sent AC_CLOSE
messages. In addition, in complete shutdown mode,
AP_TERM messages will also be sent to accessories.

Shutdown mode may be aborted but only by the original
caller.

The status of the shutdown is sent to the calling processes
by AES messages. See evnt_mesag() .

This mode is only supported by AES versions greater than
or equal to 4.0.

SWM_REZCHANGE 5 Change screen resolution. wisgr is the work station ID
(same as in AES global[13]) of the new resolution. No
other parameters are utilized.

This mode is only recognized as of AES version 4.0.
SWM_BROADCAST 7 Broadcast an AES message to all processes. cmd should

point to an 8 WORD message buffer containing the
message to send. All other parameters are ignored.

This mode is only recognized as of AES version 4.0.

shel_write() – 6.143

T H E A T A R I C O M P E N D I U M

SWM_ENVIRON 8 Manipulate the AES environment. If wisgr is
ENVIRON_SIZE (0), the current size of the environment
string is returned.

If wisgr is ENVIRON_CHANGE (1), cmd should point to a
environment variable to modify. If cmd points to
“TOSEXT=TOS,TTP”, that string will be added. Likewise,
“TOSEXT=“ will remove that environment variable.

If wisgr is ENVIRON_COPY (2), the AES will copy as
many as wiscr bytes of the current environment string into
a buffer pointer to by cmd. The function will return the
number of bytes not copied.

This mode is only recognized as of AES version 4.0.
SWM_NEWMSG 9 Inform the AES of a new message the current application

understands. wisgr is a bit mask which specifies which
new messages the application understands. Currently only
bit 0 (B_UNTOPPABLE) has a meaning. Setting this bit
when calling this function will inform the AES that the
application understands AP_TERM messages. No other
parameters are used.

This mode is only recognized as of AES version 4.0.
SWM_AESMSG 10 Send a message to the AES. cmd points to an 8 WORD

message buffer containing the message to send. No other
parameters are needed.

This mode is only recognized as of AES version 4.0.

BINDING intin[0] = mode;
intin[1] = wisgr;
intin[2] = wiscr;

addrin[0] = cmd;
addrin[1] = tail;

return crys_if(0x79);

RETURN VALUE The value shel_write() differs depending on the mode which was invoked. See
above for details.

VERSION NOTES Many new features were added as of AES version 4.0. For details of each, see
above.

T H E A T A R I C O M P E N D I U M

Window Library

The Window Library is responsible for the displaying and maintenance of AES windows. The members
of the Window Library are:

•• wind_calc()
•• wind_close()
•• wind_create()
•• wind_delete()
•• wind_find()
•• wind_get()
•• wind_new()
•• wind_open()
•• wind_set()
•• wind_update()

wind_calc() – 6.147

T H E A T A R I C O M P E N D I U M

wind_calc()
WORD wind_calc(request, kind, x1, y1, w1, h1, x2, y2, w2, h2)
WORD request, kind, x1, y1, w1, h1;
WORD *x2, *y2, *w2, *h2;

wind_calc() returns size information for a specific window.

OPCODE 108 (0x6C)

AVAILABILITY All AES versions.

PARAMETERS request specifies the mode of this call.

If request is WC_BORDER (0), x1, y1, w1, and h1 specify the work area of a
window of type kind. The call then fills in the WORDs pointed to by x2, y2, w2,
and h2 with the full extent of the window.

If request is WC_WORK (1), x1, y1, w1, and h1 specify the full extent of a
window of type kind. The call fills in the WORDs pointed to by x2, y2, w2, and
h2 with the work area of the window.

kind is a bit mask of window ‘widgets’ present with the window. For a detailed
listing of these elements see wind_create().

BINDING intin[0] = request;
intin[1] = kind;
intin[2] = x1;
intin[3] = y1;
intin[4] = w1;
intin[5] = h1;

crys_if(0x6C);

*x2 = intout[1];
*y2 = intout[2];
*w2 = intout[3];
*h2 = intout[4];

return intout[0];

RETURN VALUE wind_calc() returns 0 if an error occurred or non-zero otherwise.

COMMENTS wind_calc() is unable to calculate correct values when a toolbar is attached to a
window. This can be corrected, though, by adjusting the values output by this
function with the height of the toolbar.

SEE ALSO wind_create()

6.148 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

wind_close()
WORD wind_close(handle)
WORD handle;

wind_close() removes a window from the display screen.

OPCODE 102 (0x66)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to close.

BINDING intin[0] = handle;

return crys_if(0x66);

RETURN VALUE wind_close() returns 0 if an error occurred or non-zero otherwise.

COMMENTS Upon calling wind_close() a redraw message for the portion of the screen changed
will be sent to all applications.

Calling wind_close() does not release the memory allocated to the window
structure. wind_delete() must be called to permanently destroy the window and
free any memory allocated by the AES for the window. Until wind_delete() is
called, the window may be re-opened at any time with wind_open().

SEE ALSO wind_create(), wind_open(), wind_delete()

wind_create()
WORD wind_create(kind, x, y, w, h)
WORD kind, x, y, w, h;

wind_create() initializes a new window structure and allocates any necessary
memory.

OPCODE 100 (0x64)

AVAILABILITY All AES versions.

PARAMETERS kind is a bit array whose elements determine the presence of any ‘widgets’ on the

wind_create() – 6.149

T H E A T A R I C O M P E N D I U M

window as follows:

Name Mask Meaning

NAME 0x01 Window has a title bar.

CLOSER 0x02 Window has a close box.

FULLER 0x04 Window has a fuller box.

MOVER 0x08 Window may be moved by the user.

INFO 0x10 Window has an information line.

SIZER 0x20 Window has a sizer box.

UPARROW 0x40 Window has an up arrow.

DNARROW 0x80 Window has a down arrow.

VSLIDE 0x100 Window has a vertical slider.

LFARROW 0x200 Window has a left arrow.

RTARROW 0x400 Window has a right arrow.

HSLIDE 0x800 Window has a horizontal slider.

SMALLER 0x4000 Window has an iconifier.

The parameter kind is created by OR’ing together any desired elements.

x, y, w, and h, specify the maximum extents of the window. Normally this is the
entire screen area minus the menu bar (to find this area use wind_get() with a
parameter of WF_WORKXYWH). The area may be smaller to bound the
window to a particular size and location.

BINDING intin[0] = kind;
intin[1] = x;
intin[2] = y;
intin[3] = w;
intin[4] = h;

return crys_if(0x64);

RETURN VALUE wind_create() returns a window handle if successful or a negative number if it
was unable to create the window.

VERSION NOTES The SMALLER gadget is only available as of AES version 4.1.

COMMENTS A window is not actually displayed on screen with this call, you need to call
wind_open() to do that.

TOS version 1.00 and 1.02 limited applications to four windows. In TOS version
1.04 that limit was raised to seven. As of MultiTOS the number of open windows
is limited only by memory and the capabilities of an application.

You should ensure that your application calls a wind_delete() for each
wind_create(), otherwise memory may not be deallocated when your application

6.150 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

exits.

SEE ALSO wind_open(), wind_close(), wind_delete()

wind_delete()
WORD wind_delete(handle)
WORD handle;

wind_delete() destroys the specified window and releases any memory allocated
for it.

OPCODE 103 (0x67)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to destroy.

BINDING intin[0] = handle;

return crys_if(0x67);

RETURN VALUE wind_delete() returns 0 if an error occurred or non-zero otherwise.

COMMENTS A window should by closed with wind_close() before deleting it.

SEE ALSO wind_create(), wind_open(), wind_close(), wind_new()

wind_find()
WORD wind_find(x, y)
WORD x, y;

wind_find() returns the handle of the window found at the given coordinates.

OPCODE 106 (0x6A)

AVAILABILITY All AES versions.

PARAMETERS x and y specify the coordinates to search for a window at.

BINDING intin[0] = x;
intin[1] = y;

wind_get() – 6.151

T H E A T A R I C O M P E N D I U M

return crys_if(0x6A);

RETURN VALUE wind_find() returns the handle of the uppermost window found at location x, y. If
no window is found, the function returns 0 meaning the Desktop window.

COMMENTS This function is useful for tracking the mouse pointer and changing its shape
depending upon what window it falls over.

wind_get()
WORD wind_get(handle, mode, parm1, parm2, parm3, parm4)
WORD handle, mode;
WORD *parm1, *parm2, *parm3, *parm4;

wind_get() returns various information about a window.

OPCODE 104 (0x68)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the handle of the window to return information about (0 is the
desktop window). mode specifies the information to return and the values placed
into the WORDs pointed to by parm1, parm2, parm3, and parm4 as follows:

Name mode Meaning

WF_WORKXYWH 4 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the window’s work
area.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the current coordinates of the full extent of the
window.

WF_PREVXYWH 6 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the previous coordinates of the full extent of the
window prior to the last wind_set() call.

WF_FULLXYWH 7 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h values specified in the wind_create() call.

WF_HSLIDE 8 parm1 is filled in with the current position of the horizontal
slider between 1 and 1000. A value of one indicates that
the slider is in its leftmost position.

WF_VSLIDE 9 parm1 is filled in with the current position of the vertical
slider between 1 and 1000. A value of one indicates that
the slider is in its uppermost position.

WF_TOP 10 parm1 is filled in with the window handle of the window
currently on top. As of AES version 4.0 (and when
appl_getinfo() indicates), parm2 is filled in with the owners
AES id, and parm3 is filled in with the handle of the window
directly below it.

6.152 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_FIRSTXYWH 11 parm1, parm2, parm3, and parm4 are filled in with the x, y,
w, and h of the first AES rectangle in the window’s rectangle
list. If parm3 and parm4 are both 0, the window is
completely covered.

WF_NEXTXYWH 12 parm1, parm2, parm3, and parm4 are filled in with
subsequent AES rectangles for each time this function is
called until parm3 and parm4 are 0 to signify the end of the
list.

WF_NEWDESK 14 As of AES versions 4.0 (and when appl_getinfo()
indicates), this mode returns a pointer to the current
desktop background OBJECT tree. parm1 contains the
high WORD of the address and parm2 contains the low
WORD.

WF_HSLSIZE 15 parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_VSLSIZE 16 parm1 contains the size of the current slider relative to the
size of the scroll bar as a value from 1 to 1000. A value of
1000 indicates that the slider is at its maximum size.

WF_SCREEN 17 This mode returns a pointer to the current AES menu/alert
buffer and its size. The pointer’s high WORD is returned in
parm1 and the pointer’s low WORD is returned in parm2.
The length of the buffer is returned as a LONG with the
upper WORD being in parm3 and the lower WORD being
in parm4. Note that TOS 1.02 returns 0 in w and h by
mistake.

The menu/alert buffer is used by the AES to save the
screen area hidden by menus and alert boxes. It is not
recommended that applications use this area as its usage
is not guaranteed in future versions of the OS.

wind_get() – 6.153

T H E A T A R I C O M P E N D I U M

WF_COLOR 18 This mode gets the current color of the window widget
specified on entry to the function in the WORD pointed to by
parm1. Valid window widget indexes are as follows
(W_SMALLER is only valid as of AES 4.1):

parm1 Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field (containing the color information) used
for the object when not selected is returned in the WORD
pointed to by parm2. The ob_spec field used for the object
when selected is returned in parm3.

This mode under wind_get() is only valid as of AES
version 3.30. From AES versions 4.0 and above,
appl_getinfo() should be used to determine if this mode is
supported.

WF_DCOLOR 19 This mode gets the default color of newly created windows
as with WF_COLOR above. As above, this mode under
wind_get() only works as of AES version 3.30.

As of AES version 4.1, WF_DCOLOR changes the color of
open windows unless they have had their colors explicitly
set with WF_COLOR.

WF_OWNER 20 parm1 is filled in with the AES id of the owner of the
specified window. parm2 is filled in with its open status (0 =
closed, 1 = open). parm3 is filled in with the handle of the
window directly above it (in the window order list) and
parm4 is filled in with the handle of the window below it
(likewise, in the window order list).

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

6.154 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_BEVENT 24 parm1, parm2, parm3, parm4 are each interpreted as bit
arrays whose bits indicate supported window features.
Currently only one bit is supported. If bit 0 of the value
returned in parm1 is 1, that window has been set to be ‘un-
toppable’ and it will never receive WM_TOPPED
messages, only button clicks.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_BOTTOM 25 parm1 will be filled in with the handle of the window currently
on the bottom of the window list (it may actually be on top if
there is only one window). Note also that this does not
include the desktop window.

This mode is only available as of AES version 4.0 (and
when indicated by appl_getinfo()).

WF_ICONIFY 26 parm1 will be filled in with 0 if the window is not iconified or
non-zero if it is. parm2 and parm3 contain the width and
height of the icon. parm4 is unused.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_UNICONIFY 27 parm1, parm2, parm3, and parm4, are filled in with the x, y,
w, and h of the original coordinates of the iconified window.

This mode is only available as of AES version 4.1 (and
when indicated by appl_getinfo()).

WF_TOOLBAR 30 parm1 and parm2 contain the high and low WORD
respectively of the pointer to the current toolbar object tree
(or NULL if none).

This mode is only available as of AES version 4.1.
WF_FTOOLBAR 31 parm1, parm2, parm3, are parm4, are filled in with the x, y,

w, and h, respectively of the first uncovered rectangle of the
toolbar region of the window. If parm3 and parm4 are 0, the
toolbar is completely covered.

This mode is only available as of AES version 4.1.
WF_NTOOLBAR 32 parm1, parm2, parm3, and parm4, are filled in with the x, y,

w, and h, respectively of subsequent uncovered rectangles
of the toolbar region. This mode should be repeated to
reveal subsequent rectangles until parm3 and parm4 are
found to be 0.

This mode is only available as of AES version 4.1.

BINDING /* This binding must be different to */
/* accomodate reading WF_COLOR and */
/* WF_DCOLOR */

contrl[0] = 0x68;
contrl[1] = 2;
contrl[2] = 1;
contrl[3] = 0;
contrl[4] = 0;

wind_new() – 6.155

T H E A T A R I C O M P E N D I U M

intin[0] = handle;
intin[1] = mode;

if(mode == WF_DCOLOR || mode == WF_COLOR)
{

intin[2] = *x;
contrl[1] = 3;

}

aes();

*x = intout[1];
*y = intout[2];
*w = intout[3];
*h = intout[4];

return intout[0];

RETURN VALUE wind_get() returns a 0 if an error occurred or non-zero otherwise.

SEE ALSO wind_set()

wind_new()
WORD wind_new(VOID)

wind_new() closes and deletes all of the application’s windows. In addition, the
state of wind_update(), and the mouse pointer hide count is reset.

OPCODE 109 (0x6D)

AVAILABILITY Available as of AES version 0x0140.

BINDING return crys_if(0x6D);

RETURN VALUE The return value is reserved and currently unused

COMMENTS This function should not be relied upon to clean up after an application. It was
designed for parent processes that wish to ensure that a poorly written child
process has properly cleaned up after itself.

SEE ALSO wind_delete(), graf_mouse(), wind_update()

6.156 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

wind_open()
WORD wind_open(handle, x, y, w, h)
WORD handle;
WORD x, y, w, h;

wind_open() opens the window specified.

OPCODE 101 (0x65)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the handle of the window to open as returned by wind_create().
x, y, w, and h specify the rectangle into which the rectangle should be displayed.

BINDING intin[0] = handle;

return crys_if(0x65);

RETURN VALUE wind_open() returns a 0 if an error occurred or non-zero otherwise.

COMMENTS This call will also trigger a WM_REDRAW message which encompasses the
work area of the window so applications should not initially render the work area,
rather, wait for the message.

SEE ALSO wind_close(), wind_create(), wind_delete()

wind_set()
WORD wind_set(handle, mode, parm1, parm2, parm3, parm4)
WORD handle, mode, parm1, parm2, parm3, parm4;

wind_set() sets various window attributes.

OPCODE 105 (0x69)

AVAILABILITY All AES versions.

PARAMETERS handle specifies the window handle of the window to modify. mode specifies the
attribute to change and the meanings of parm1, parm2, parm3, and parm4 as
follows:

wind_set() – 6.157

T H E A T A R I C O M P E N D I U M

Name mode Meaning

WF_NAME 2 This mode passes a pointer to a character string
containing the new title of the window. parm1 contains
the high WORD of the pointer and parm2 contains the
low WORD.

WF_INFO 3 This mode passes a pointer to a character string
containing the new information line of the window.
parm1 contains the high WORD of the pointer, parm2
contains the low WORD.

WF_CURRXYWH 5 parm1, parm2, parm3, and parm4 specify the x, y, w,
and h of the new coordinates of the full extent of the
window.

WF_HSLIDE 8 parm1 specifies the new position of the horizontal slider
between 1 and 1000. A value of 1 indicates that the
slider is in its leftmost position.

WF_VSLIDE 9 parm1 specifies the new position of the vertical slider
between 1 and 1000. A value of 1 indicates that the
slider is in its uppermost position.

WF_TOP 10 parm1 specifies the window handle of the window to
top. Note that if multiple calls of wind_set(WF_TOP , ...
) are made without releasing control to the AES (which
allows the window to actually be topped), only the most
recent window specified will actually change position.

WF_NEWDESK 14 This mode specifies a pointer to an OBJECT tree
which is redrawn automatically by the desktop as the
background. parm1 contains the high WORD of the
pointer and parm2 contains the low WORD. To reset
the desktop background to the default, specify parm1
and parm2 as 0.

WF_HSLSIZE 15 parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

WF_VSLSIZE 16 parm1 defines the size of the current slider relative to
the size of the scroll bar as a value from 1 to 1000. A
value of 1000 indicates that the slider is at its maximum
size.

6.158 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

WF_COLOR 18 This mode sets the current color of the window widget
specified on entry in parm1. Valid window widget
indexes are as follows (W_SMALLER is only valid as
of AES 4.1):

parm1 Value ob_type
W_BOX 0 IBOX
W_TITLE 1 BOX
W_CLOSER 2 BOXCHAR
W_NAME 3 BOXTEXT
W_FULLER 4 BOXCHAR
W_INFO 5 BOXTEXT
W_DATA 6 IBOX
W_WORK 7 IBOX
W_SIZER 8 BOXCHAR
W_VBAR 9 BOX
W_UPARROW 10 BOXCHAR
W_DNARROW 11 BOXCHAR
W_VSLIDE 12 BOX
W_VELEV 13 BOX
W_HBAR 14 BOX
W_LFARROW 15 BOXCHAR
W_RTARROW 16 BOXCHAR
W_HSLIDE 17 BOX
W_HELEV 18 BOX
W_SMALLER 19 BOXCHAR

The ob_spec field of the object (containing the color
information) while the window is on top is defined in
parm2. The ob_spec field for the object while the
window is not on top is defined in parm3.

This mode is only valid as of AES version 0x0300.
WF_DCOLOR 19 This mode sets the default color of newly created

windows as with WF_COLOR above. This mode only
works as of AES version 0x0300. As of AES version
4.1, this mode causes all currently displayed windows
which have not had their color explicitly set with
WF_COLOR to be changed.

WF_BEVENT 24 parm1, parm2, parm3, and parm4 are each interpreted
as bit arrays whose bits indicate supported window
features. Currently only one bit is supported. If bit 0
(B_UNTOPPABLE) of parm1 is set, the window will be
set to be ‘un-toppable’ and it will never receive
WM_TOPPED messages, only button clicks.

This mode is only available as of AES versions 4.0.
WF_BOTTOM 25 This mode will place the specified window at the

bottom of the window list (if there is more than one
window) and top the new window on the top of the list.

This mode is only available as of AES version 4.0.

wind_update() – 6.159

T H E A T A R I C O M P E N D I U M

WF_ICONIFY 26 This mode iconifies the specified window to the X, Y,
width, and height coordinates given in parm1, parm2,
parm3, and parm4 respectively. Normally, this happens
as the result of receiving a WM_ICONIFY message.

This mode is only available as of AES version 4.1.
WF_UNICONIFY 27 This mode uniconifies the window specified, returning it

to its original X, Y, width, and height as specified in
parm1, parm2, parm3, and parm4 respectively.
Normally, this happens as the result of receiving a
WM_UNICONIFY message.

This mode is only available as of AES version 4.1.
WF_UNICONIFYXYWH 28 This mode sets the X, Y, width, and height that will be

transmitted to the window with the next
WM_UNICONIFY message that targets it. This call is
used when a window is opened in an iconified state to
give the OS a method of positioning it when it is
uniconified.

This mode is only available as of AES version 4.1.
WF_TOOLBAR 30 This mode attaches a toolbar to the specified window.

parm1 and parm2 contain the high and low WORD of
the address of the toolbar OBJECT tree respectively.
parm3 and parm4 are unused.

Set parm1 and parm2 to 0 to remove a toolbar.

BINDING intin[0] = handle;
intin[1] = mode;
intin[2] = x;
intin[3] = y;
intin[4] = w;
intin[5] = h;

return crys_if(0x69);

RETURN VALUE wind_set() returns 0 if an error occurred or non-zero otherwise.

SEE ALSO wind_get()

wind_update()
WORD wind_update(mode)
WORD mode;

wind_update() manages the screen drawing semaphore.

OPCODE 107 (0x6B)

6.160 – Window Library - AES Function Reference

T H E A T A R I C O M P E N D I U M

AVAILABILITY All AES versions.

PARAMETERS mode specifies an action as follows:

Name mode Meaning

END_UPDATE 0 This mode resets the flag set by BEG_UPDATE and should
be called as soon as redrawing is complete. This will allow
windows to be moved and menus to be dropped down again.

BEG_UPDATE 1 Calling this mode will suspend the process until no drop-down
menus are showing and no other process is updating the
screen. This will then set a flag which guarantees that the
screen will not be updated and windows will not be moved until
you reset it with END_UPDATE.

Generally this call is made whenever a WM_REDRAW
message is received to lock the screen semaphore while
redrawing.

END_MCTRL 2 This mode releases control of the mouse to the AES and
resumes mouse click message services.

BEG_MCTRL 3 This mode prevents mouse button messages from being sent
to applications other than your own.

form_do() makes this call to lock out screen functions. Desk
accessories which display a dialog outside of a window must
use this function to prevent button clicks from falling through to
the desktop.

BINDING intin[0] = mode;

return crys_if(0x6B);

RETURN VALUE wind_update() returns 0 if an error occurred or non-zero otherwise.

VERSION NOTES As of AES version 4.0, you may logically OR a mask of NO_BLOCK (0x0100)
to either BEG_UPDATE or BEG_MCTRL . This mask will prevent the
application from blocking if another application currently has control of the screen
semaphore. Instead, if another application has control, the function will
immediately return with an error value of 0.

This method should only be used by timing-sensitive applications such as terminal
programs in which a long redraw by another application could cause a timeout.

COMMENTS All wind_update() modes nest. For instance, to release the screen semaphore, the
same number of END_UPDATE calls must be received as were BEG_UPDATE
calls. It it recommended that you design your application in a manner that avoids
nesting these calls.

Both the BEG_UPDATE and BEG_MCTRL modes should be used prior to
displaying a form or popup to prevent them from being overwritten or clicks to
them being sent to other applications.

wind_update() – 6.161

T H E A T A R I C O M P E N D I U M

Always wait until after the BEG_UPDATE call to turn off the mouse cursor when
updating the screen to be sure you have gained control of the screen.

Applications such as slide-show viewers which require the whole screen area
(and may need to change screen modes) may call wind_update() with parameters
of both BEG_UPDATE and BEG_MCTRL to completely lock out the screen
from other applications. The application would still be responsible for saving the
screen area, manipulating video modes as necessary, restoring the screen when
done, and returning control of the screen to other applications with
END_UPDATE and END_MCTRL .

SEE ALSO wind_new()

